
1 © 2011 The MathWorks, Inc.

Simulink Design Verifier 2.0
Product Presentation

Denizhan Alparslan, Ph.D.

2

Agenda

 Introduction: Design Verification Challenge

– Discover unanticipated functionality

 Part 1: Identifying Design Errors Early

 Part 2: Verifying Design Against Requirements

– Model and validate requirements using models

– Prove design correctness

 Part 3: Model Coverage Analysis

– Generate test vectors

– Measure model coverage

 Part 4: What’s New in Simulink Design Verifier

3

Design Verification Challenge

Discover Unanticipated Functionality

 Test for unanticipated (unwanted)

functionality

– Example: Thrust reversers shall not

(never, by design) deploy during flight

 Help:

– Process: Industry standards such as

DO-178B, ISO 26262

– Rigor: Systematic testing (conditions,

decisions, MC/DC)

– Math: Formal methods

4

Simulink

Simulink Verification

and Validation

How can Simulink Design Verifier help?

Simulink

Design

Verifier

 Model and analyze functional requirements

Verify generated code in cosimulation

 Generate tests and analyze model coverage

 Identify design errors

5

Early Design Verification with

Simulink Design Verifier

DSP FPGA ASIC

Embedded
Software

Digital
Electronics

C, C++ VHDL, Verilog

Implement

Integration

MCU

System Design

 Physical Components

 Environment

 Algorithms

Requirements

Model 1

Model 1.1

Model n..

Model used for

production code

generation

Early design

verification
• Requirements-based

analysis

• Design error detection

• Property proving

Later – design done

• Test coverage analysis

• Code verification

(SIL/PIL)

Executable

specification

Design

Implementation

6

TRW Automotive Develops and Tests

Electric Parking Brake Using Simulink

and Simulink Design Verifier

Challenge
Design tests for an electric parking brake control system

Solution
Use Simulink Design Verifier to automatically

generate tests that maximize model coverage

and enable systematic design verification

Results
 Test development time reduced from days

to hours

 100% model coverage achieved

 Formal testing begun two months into the

project

“Everyone knows that errors are

much less expensive to fix when

you find them early. With Simulink

Design Verifier, we build on the

advantages of Model-Based Design

by performing formal testing in the

first phases of development."

 Christoph Hellwig

TRW

Link to user story

Electronic parking brake control system.

http://www.mathworks.com/products/sldesignverifier/userstories.html?file=45635&title=TRW Automotive Develops and Tests Electric Parking Brake Using Simulink and Simulink Design Verifier
http://www.mathworks.com/products/sldesignverifier/userstories.html?file=45635&title=TRW Automotive Develops and Tests Electric Parking Brake Using Simulink and Simulink Design Verifier

7

Simulink Design Verifier 2.0

Key Features

 Polyspace and Prover Plugin formal analysis engines

 Detection of dead logic, integer and fixed-point overflows, division

by zero, and violations of design properties

 Blocks and functions for modeling functional and safety

requirements

 Test vector generation from functional requirements and model

coverage objectives, including condition, decision, modified

condition/decision (MC/DC), and signal range

 Property proving, with generation of violation examples for analysis

and debugging

 Fixed-point and floating-point model support

8

Identifying Design Errors Early

9

Identifying Design Errors Early

Automatic identification of hard-to-find design

inconsistencies in the model without running simulation

 Integer overflow

 Division by zero

 Dead logic

 Assertion violation

10

Example Design Error Found
Dead Logic

 Certain designed functionality can never be activated.

 Typical implications:
 Design can’t meet

requirements.

 Design generates dead code.

11

Example Design Error Found
Division by Zero, Overflow

 Certain valid input data can cause non-deterministic

behavior or exceptions.

 Typical implication:

– Incomplete or incorrect specification

12

Example Design Error Found

Assertion Violation

 Assertions are blocks you can add to your design to:

– Detect faulty behavior

– Monitor design and generated code running in simulation

 Simulink Design Verifier can provide you with the test

cases that can trigger assertions

13

Verifying Design Against Requirements

14

Working with Formal Requirements

Requirements

Verification Model

(references design model)

Design Verification

C
Models for code

generation do not

contain Simulink

Design Verifier

blocks

Properties/test

specification V1.0

V2.0

V3.0

Pattern library

Results

Design

Verifier

15

Formalizing Requirements Into Properties

 Must do Must never do

Model
Requirements

Prove Design
Correctness

16

Examples of Formalized Requirements

Explicit descriptions of required behavior – functional or

safety requirement

 Primitive:

– Objectives, proofs

 Invariant:

– A > B => C=0

 Temporal:

– A > B for 10 time steps =>

C=0 within 5 time steps

 Complex, state-based

– Stateflow, MATLAB

functions

Example invariant:
 Always identical, for every time

step, including initialization, all

modes of operation

17

Functional Requirements

Must Do (Test Case)

Must demonstrate opening and closing the valve when

[Condition]

18

Safety Requirements

Must Never Do (Proof)

Thrust reverser shall not deploy when [Condition]

19

Validation of Formal Verification Results

Simulation / Debugging

Requirement models (properties) cosimulate with

the design. Simulation driven by counterexamples.

Requirement

Proof objective

violation stopped

the simulation.

20

Validation of Property Proving Results

Simulation / Model Coverage

Model coverage of Simulink Design Verifier objectives

21

Model Coverage Analysis

22

Model Coverage Analysis

Simulation

Formal

Methods

Generate
Tests

Measure
Coverage in
Simulation

23

Verify Generated Code

1. Run requirements-based

tests

2. Generate test vectors for

missing model coverage

objectives

3. Review generated test

vectors

4. Update requirements-

based tests

5. Execute tests on the

generated code in SIL

and PIL

6. Compare results

C

Target Processor

Production Code

Generation

Component

Source Code

Code Generation

Model

Simulink Design Verifier

Automatic Test Generation

Test Harness

24

Using Test Vectors for Code Verification

A. Exporting test data into code testing tools

B. Cosimulating via S-function wrappers

sldvData.mat

External script/

testing tool

Verification

model

Model algorithm

xy.c Code algorithm

25

Applying Formal Methods

Technology Limitations

 Simulink Design Verifier supports discrete time systems

only

 Use of non-linear functions and long timers may require

abstraction, time scaling, or other additional strategies.

– In some cases, theorem prover requires additional information

to solve the problem.

 Proof of property provides levels of confidence beyond

test generation and violation detection, but it is also

harder to achieve. Complete proof may require

optimization of the design for the purpose of

verification.

26

What’s New in Simulink Design Verifier

27

Extending Simulink Block Support

Simulink and Stateflow

Virtual buses

Block replacement

Fixed-point support

Embedded MATLAB

Subset Support

Stateflow truth tables

 Simulink bus signals

and bus objects support

Model reference

Automatic stubbing for

unsupported operations

Subsystem replacement

Support for enumerated

signals and parameters,

additional Simulink

blocks

Support for Stateflow

absolute-time temporal

logic operators

Support for dead zone,

dead zone dynamic,

lookup table dynamic,

probe (partial), and width

Dedicated analysis engine

for nonlinear arithmetic

and math operations

2007a

2007b

2008a

2008b

2009a

2009b

2010a

2010b

2011a

28

Making Definition of Verification Objectives

Easier

Test condition, test

objective

Proof assumption, proof

objective

Verification subsystem

 Stateflow functions for

verification objectives and

constraints

 New Implies block

New property-proving

examples and demos

New Embedded MATLAB

functions for verification

objectives and constraints

 Library of temporal

operators (demo)

 New temporal operator

blocks: Detector, Extender,

Within Implies

2007a
2007b

2008a

2008b

2009a

2009b

2010a

2010b

2011a

29

TÜV Certification of Simulink Design Verifier

 TÜV SÜD certified:

 Embedded Coder

 Simulink Design Verifier

 Simulink Verification and Validation

 Polyspace products for C/C++

 For use in development processes which need to comply with IEC

61508, ISO 26262, or EN 50128

MathWorks announcements:

www.mathworks.com/company/pressroom/articles/article17790.html (Initial certification)

www.mathworks.com/company/pressroom/articles/article39270.html (Recertification, ISO 26262 support)

TÜV SÜD certificate database:
http://193.30.192.53:8080/CertDetail_eng.aspx?CertNo=Z10%2009%2006%2067052%20002&CertTyp=no

http://193.30.192.53:8080/CertDetail_eng.aspx?CertNo=Z10 09 07 67052 003&CertTyp=no

http://193.30.192.53:8080/CertDetail_eng.aspx?CertNo=Z10%2011%2001%2067052%20008&CertTyp=no

Note: The products listed above were not developed using certified processes.

http://www.mathworks.com/company/pressroom/articles/article17790.html
http://www.mathworks.com/company/pressroom/articles/article39270.html
http://193.30.192.53:8080/CertDetail_eng.aspx?CertNo=Z10 09 06 67052 002&CertTyp=no
http://193.30.192.53:8080/CertDetail_eng.aspx?CertNo=Z10 09 06 67052 002&CertTyp=no
http://193.30.192.53:8080/CertDetail_eng.aspx?CertNo=Z10 09 06 67052 002&CertTyp=no
http://193.30.192.53:8080/CertDetail_eng.aspx?CertNo=Z10 11 01 67052 008&CertTyp=no

30

Conclusion

 Simulink Design Verifier can automatically discover the

following types of design errors:

– Division by zero

– Integer overflow

– Dead logic

– Assertion violations

 Definition of functional test objectives and design

properties using the supplied operator blocks enable

formal requirements modeling and verification

