Reachability Analysis: State of the Art for Various System Classes

Matthias Althoff

Carnegie Mellon University

October 19, 2011

Matthias Althoff (CMU)

Reachability Analysis

October 19, 2011 1 / 16

A 🕨

Safety Verification Using Reachable Sets

• System is safe if no trajectory enters the unsafe set.

Safety Verification Using Reachable Sets

- System is safe if no trajectory enters the unsafe set.
- Overapproximated system is safe \rightarrow real system is safe.
- Challenge: Compute tight overapproximations while avoiding the curse of dimensionality.

Matthias Althoff (CMU)

Overview of Important System Classes

For all system classes we consider

- uncertain initial states $x(0) \in \mathcal{X}$,
- uncertain inputs $u(t) \in \mathcal{U}$,
- finite or infinite time horizons (search for invariant set).

		Cont. var.			
System class	Dynamics	(best case)	Challenge		
linear time	$\dot{x} = Ax(t) + Bu(t),$	1000	none		
invariant (LTI)					
LTI with unc.	$\dot{x} = Ax(t) + Bu(t),$	100	parameter		
parameters	$A\in\mathcal{A}$	dependencies			
nonlinear	$\dot{x} = f(x(t), u(t), p),$	100	linearization		
	p: parameter vector		errors		
hybrid	hybrid automaton	100 guard intersection			
		< □ >			
Matthias Althoff (CMI	J Reachability A	nalysis	October 19, 2011 3 / 16		

Linear Time Invariant (LTI) Systems

Work of Colas Le Guernic and Antoine Girard (2006).

$$\dot{x} = Ax(t) + Bu(t), \quad x(0) \in X_0, \ u(t) \in U$$

- Scalable (O(n³); n: nr of cont. state variables) when using zonotopes or support functions as set representation. More than 1000 state variables in a few minutes.
- First wrapping-free algorithm for LTI-Systems; wrapping-effect: propagation of overapproximations through successive time steps.

Linear Systems with Uncertain Parameters

System matrix A is uncertain in a set of matrices A.

 $\dot{x} = A(t)x(t) + Bu(t), \quad x(0) \in X_0, \ u(t) \in U, \ A(t) \in \mathcal{A} \subset \mathbb{R}^{n \times n}$

- Different algorithms for constant and time varying system matrix A.
- No wrapping-free implementation exists.
- Scalable $(\mathcal{O}(n^3))$ when using zonotopes as set representation.
- How to represent uncertainty in parameters?
 - Interval matrices $\mathcal{A} = [\underline{A}, \overline{A}]$,
 - matrix zonotopes $\mathcal{A} = \{C + \sum_{i=1}^{\kappa} \beta_i G_i | \beta_i \in [-1, 1], C, G_i \in \mathbb{R}^{n \times n}\},\$
 - matrix polytopes $\mathcal{A} = \{\sum_{i=1}^{\kappa} \alpha_i V_i | V_i \in \mathbb{R}^{n \times n}, \alpha_i \ge 0, \sum_i \alpha_i = 1\}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

LTI Systems

RLC circuit

Example: RLC circuit with 40 states.

Nonlinear Systems with Uncertain Parameters

General continuous dynamics described by a Lipschitz continuous function:

 $\dot{x} = f(x(t), u(t), p(t)), \quad x(0) \in X_0, u(t) \in U, p(t) \in \mathcal{P} \subset \mathbb{R}^p$

- Approach is based on linearizing the system dynamics while adding the linearization errors as an additional uncertain input.
- Scalable when using zonotopes.
- Two examples:
 - Rollover verification of a truck.
 - Online verification of autonomous car maneuvers.

イロト 人間ト イヨト イヨト

Sketch of the Truck

・ロト ・聞ト ・ヨト ・ヨト

Э

Nonlinear Systems

Truck Dynamics

$$\begin{split} mv(\dot{\beta}+\dot{\Psi}) &- m_{S}h\ddot{\Theta} = Y_{\beta}\beta + Y_{\dot{\Psi}}(v)\dot{\Psi} + Y_{\delta}\delta \\ &- l_{xz}\ddot{\Theta} + l_{zz}\ddot{\Psi} = N_{\beta}\beta + N_{\dot{\Psi}}(v)\dot{\Psi} + N_{\delta}\delta \\ (l_{xx} + m_{S}h^{2})\ddot{\Theta} - l_{xz}\ddot{\Psi} = m_{S}gh\Phi + m_{S}vh(\dot{\beta}+\dot{\Psi}) - k_{f}(\Phi-\Phi_{t,f}) \\ &- b_{f}(\dot{\Phi}-\dot{\Phi}_{t,f}) - k_{r}(\Phi-\Phi_{t,r}) - b_{r}(\dot{\Phi}-\dot{\Phi}_{t,r}) \\ -r(Y_{\beta,f}\beta + Y_{\dot{\Psi},f}\dot{\Psi} + Y_{\delta}\delta) = m_{u,f}v(r - h_{u,f})(\dot{\beta}+\dot{\Psi}) + m_{u,f}gh_{u,f}\Phi_{t,f} \\ &- k_{t,f}\Phi_{t,f} + k_{f}(\Phi-\Phi_{t,f}) + b_{f}(\dot{\Phi}-\dot{\Phi}_{t,f}) \\ -r(Y_{\beta,r}\beta + Y_{\dot{\Psi},r}\dot{\Psi}) = m_{u,r}v(r - h_{u,r})(\dot{\beta}+\dot{\Psi}) - m_{u,r}gh_{u,r}\Phi_{t,r} \\ &- k_{t,r}\Phi_{t,r} + k_{r}(\Phi-\Phi_{t,r}) + b_{r}(\dot{\Phi}-\dot{\Phi}_{t,r}) \\ \dot{\nu} = a_{x}. \end{split}$$

yaw controller:

$$\delta = k_1 e + k_2 \int e(t) dt, \quad e = \dot{\Psi}_d - \dot{\Psi}.$$

$v \in$	[10, 20] m/s	[20, 30] m/s	[30,∞[m/s
controller	$k_1 = 0.4$	$k_1 = 0.5$	$k_1 = 0.6$
gains	$k_2 = 1.5$	$k_2 = 2$	$k_2 = 2.5$

Matthias Althoff (CMU)

October 19, 2011 9 / 16

- 2

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

Reachable Set of the Truck

Matthias Althoff (CMU)

October 19, 2011 10 / 16

Nonlinear Systems

Online Verification Of Autonomous Cars

possible collision

Autonomous vehicles cannot perfectly follow planned trajectories due to

- uncertain initial states,
- uncertain measurements,
- disturbances.

Consequence: Planned maneuver is safe under perfect conditions, but may become unsafe due to uncertainties.

Verification Of Evasive Maneuver

Evasive maneuver due to a pedestrian stepping on the road:

Road Occupancy after reachable set computation:

Computation time in MATLAB on an Intel i7 Processor with 1.6 GHz in 2.24 s \rightarrow Around 2 times faster than maneuver time (5 s).

Matthias Althoff (CMU)

Hybrid Systems

Graphical Description:

- In addition to continuous systems, the intersection with guard sets is required.
- Example: Reachability analysis of a powertrain (up to 100 cont. variables).

Matthias Althoff (CMU)

Model of the Powertrain

Powertrain with arbitrary number of rotating masses:

The system is hybrid due to the consideration of backlash.

Reachable Set of the Powertrain

Computation times in seconds:

dim. <i>n</i>	11	21	31	41	51	101	
CPU time	7.327	21.96	36.84	120.2	318.8	10079	
1^{st} guard	0.247	3.454	11.99	49.36	145.8	4609	
2 nd guard	0.259	3.494	12.61	51.57	148.1	4975	

Matthias Althoff (CMU)

October 19, 2011 15 / 16

Conclusions and Discussion

Conclusions:

- For all considered system classes (linear, nonlinear, hybrid) new techniques make it possible to consider systems beyond academic examples.
- However: Typical industry systems with several hundred state variables and complex dynamics (hybrid with nonlinear cont. dynamics) are still out of reach.

Discussion to further improve scalability:

- Consider verification in the design process:
 - What are subsystems and sub-specifications of the whole system?
 - Can the system design be slightly changed to the advantage of a much simpler verification?
- Can simple models represent complex models when adding uncertainty?

イロト 不得下 イヨト イヨト 二日