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An informal introduction to 
Abstract Interpretation
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Program concrete models/semantics
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• Program executions are modelled by the language 
formal semantics (observed at discrete times)

t

s(t)
Bad states
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Bad states

Verification of safety properties
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• Program executions cannot reach a state in which 
computations can go wrong
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• The computations are over-approximated in the 
abstract (e.g. by reachable states)
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Bad states

Abstraction
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Spurious paths
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Bad states

• Further approximations of the reachable states may 
introduce spurious states

Abstraction over-approximation

7

Spurious states
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Machine-computable abstractions
• To scale up, machine computable abstraction must be 

very efficient and precise enough
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• No definite error is ever omitted (counter-examples: 
Coverity, Klocwork, etc)
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Soundness
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Bad states

Incompleteness: false alarms
• Spurious errors are possible (e.g. PolySpace) and may 

be eliminated by refining the abstraction (e.g.  Astrée)
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Application to the 
Verification of Embedded 

Control Systems
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Applications
• Verification of absence of runtime errors (arithmetic 

overflows, divisions by zero, buffer overruns, null and 
dangling pointers, user assertion violations, 
unreachability, ...) so specification is fully automatic

• Avionics,  Spatial,  Automotive,  Medical,  Systems on 
Chip (SoC), etc

• Use general abstractions for programming languages 
(integers, floats, arrays, structures, pointers, ...)

• Use domain-specific abstractions incorporating 
knowledge on control systems (filters, quaternions, 
integrators, etc)

12
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Abstractions
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2
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Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]
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Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):
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Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F ( x1, . . . , xn⌦) � ⇥( F1(x1), . . . ,
Fn(xn⌦) and  r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥( [0, 100], odd⌦) =  [1, 99], odd⌦.
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Example of general purpose abstraction: octagons

•  

• Example:

•  

•
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Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;
L = A;
if (R>V)

{ ! L = Z+V; }
!

}

• At !, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at ! that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

" The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

" Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

" Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

" We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21
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II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2
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Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⇥cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):
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too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌅ D1, . . . , lfp�Fn ⌅ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇤ �1(lfp�F1) ⇧ · · · ⇧ �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌅ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌅ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (⌃x1, . . . , xn⌥) � ⇥(⌃F1(x1), . . . ,
Fn(xn⌥) and ⌃r1, . . . , rn⌥ = lfp�F in CJtKI ⇤ �1(r1) ⇧ · · · ⇧ �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥(⌃[0, 100], odd⌥) = ⌃[1, 99], odd⌥.
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Example of domain-specific abstraction: ellipses

38

Example of analysis by Astrée (suite)

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;
void filter () {

static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; }
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {
X = 0.9 * X + 35; /* simulated filter input */
filter (); INIT = FALSE; }

}

FICS’08, Shanghai, 3–6/6/2008 — 64 — © P. Cousot
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Example of domain-specific abstraction: exponentials 

30

Arithmetic-geometric progressions (Example 2)
% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
volatile BOOLEAN I; int R; BOOLEAN T;
void main() {

R = 0;
while (TRUE) {
__ASTREE_log_vars((R));
if (I) { R = R + 1; }
else { R = 0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());

}}

% cat count.config
__ASTREE_volatile_input((I [0,1]));
__ASTREE_max_clock((3600000));
% astree –exec-fn main –config-sem count.config count.c|grep ’|R|’

|R| <= 0. + clock *1. <= 3600001.

 potential overflow!

More precise than the clock domain (intervals for X, X + clock,
X ` clock) which could therefore be suppressed!
MPI, 8/26/2008 — 84 — � P. Cousot
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Commercial Tools
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Commercialization
• AbsInt       (www.absint.de)
• Astrée (run-time error analysis)

• Other abstract-interpretation-based tools: WCET, 
stack usage, memory safety analysis
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Clousot/CCcheck in Visual Studio
• Modular code contract verification (and inference)

• see online, www.rise4fun.com
19
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Research Challenges
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CMACS achievements
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• Static analysis of array content (POPL 2011)

• Necessary precondition inference for code contracts 
(VMCAI 2011)

• Abstract interpretation-based theory to combine 
abstract interpretation, model-checking and 
verifiers /SMT solvers (FOSSACS 2011)

• Termination analysis (POPL 2012)

• Probabilistic Abstract Interpretation
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Research challenges
• Complex data structures

• Liveness, Closing the loop, ...

• Parallelism, Fairness, Scheduling, ... (AstréeA, 
www.astreea.ens.fr/)

• Security (AstréeS)
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Other application domains:
Security

• Information flow analysis

Biology 
• Cellular signaling networks

• Formal rule-based model reduction
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Conclusion

24
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Conclusion
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• Does scale up (to > 106 LOCS) !

• Find bugs not found by simulation, testing, 
enumerative bug finding methods

• Can prove the absence of well-defined categories of 
bugs 

• Covers new requirements on formal methods (e.g. 
DO 178 C)

• Mandatory in all embedded control systems of an 
European plane manufacturer

• Unfortunately not so well-known and well-used in 
the US
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The End
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