
Software Verification / Testing

Rance CleavelandRance Cleaveland

Department of Computer Science
and

Fraunhofer Center for Experimental Software EngineeringFraunhofer Center for Experimental Software Engineering

University of Maryland

20 October 201120 October 2011

©2011 University of Maryland

This Talk

Some recent developments in software
verification and testingg

©2011 University of Maryland 1

Software Verification?

• Related to, but different from, IEEE definition
• Traditionally, in CS: formal methodsTraditionally, in CS: formal methods

– Given software, spec
• Software = “code”Software code
• Spec = “requirement” = logical formula

Prove software meets spec– Prove software meets spec
• (Informal verification often called “validation”.)

©2011 University of Maryland 2

Model Checking

• Verification = proof
• Model checking: automated proof!Model checking: automated proof!

– Given software, spec
– Model checker tries to build proofModel checker tries to build proof

• Ongoing research: applicability
Decidability– Decidability

– Scalability
• Embedded control applications!• Embedded control applications!

©2011 University of Maryland 3

Software Testing

• Most often-used method for checking
software correctness
– Select tests
– Run software on tests
– Analyze results

• Traditionally
M l h ti i i– Manual, hence time-consuming, expensive

– In control applications: hard to test
software by itselfsoftware by itself

©2011 University of Maryland 4

Exciting Developments

• Combine
– Formal specsFormal specs
– Testing

• To automate testing “scalably”To automate testing scalably
– Model-based testing

Instrumentation based verification– Instrumentation-based verification
– Requirements reconstruction

©2011 University of Maryland 5

Model-Based Testing

• Develop specs as executable models
– SimulinkSimulink
– State machines
– EtcEtc.

• Use model to determine correct test response
Automates “results analysis”– Automates results analysis

– Models, tests needed

©2011 University of Maryland 6

Model-Based Testing (cont.)

CTests Compare

©2011 University of Maryland 7

Tests Can Be Generated fromTests Can Be Generated from
Models!

TestTest
Gen

Model Tests

• Functionality provided by tools like Reactis® for Simulink /
StateflowStateflow

• Goal: automate test generation task by creating tests that
cover model logic

• Reactis: guided simulation algorithm• Reactis: guided simulation algorithm

©2011 University of Maryland 8

Applying Model-Based Testing

• Widespread in automotive, less so in aero /
medical-device
– Regulatory issues
– Need for models
– Modeling notations, support

• What about models?What about models?
– Sometimes result of earlier design phases
– Models as reusable testing infrastructureModels as reusable testing infrastructure

©2011 University of Maryland 9

Challenges

• Technical
– Algorithms for test generationAlgorithms for test generation
– Modeling languages

• ProceduralProcedural
– Integration into existing QA processes

Regulatory considerations– Regulatory considerations

©2011 University of Maryland 10

Instrumentation BasedInstrumentation-Based
Verification

• Model-based testing assumes model correct
• IBV: a way to check model correctness vis a vis

requirementsrequirements

Requirements

Specificationsmodels

•Designmodels

©2011 University of Maryland 11

Instrumentation BasedInstrumentation-Based
Verification: Requirements

• Verification needs
formalized
requirementsrequirements

• IBV: formalize
requirements as

it d lmonitor models

• Example
“If d i < 30“If speed is < 30,
cruise control must
remain inactive”

©2011 University of Maryland 12

I t t ti B d V ifi tiInstrumentation-Based Verification:
Checking Requirements

• Instrument design
model with monitors

• Use coverage testingUse coverage testing
to check for monitor
violations

• Tool: Reactis®Tool: Reactis®
– Product of Reactive

Systems, Inc.
– SeparatesSeparates

instrumentation, design
– More info:

www.reactive-
systems comsystems.com

©2011 University of Maryland 13

Applying Instrumentation BasedApplying Instrumentation-Based
Testing

• Robert Bosch production automotive application
– Requirements: 300-page document

10 b t f li d (20% f t)– 10 subsystems formalized (20% of system)
• 62 requirements formalized as monitor

models
• IBV applied
• 11 requirements issues identified

• Another Bosch case study: product line• Another Bosch case study: product-line
verification using IBV

• A number of other case studies

©2011 University of Maryland 14

Requirements Reconstruction

• The Requirements Reconstruction problem

– Given: software

– Produce: requirements

• Why?

– System comprehension

– Specification reconstruction

• Missing / incomplete / out-of-date documentation
• “Implicit requirements” (introduced by developers)

©2011 University of Maryland 15

Invariants as Requirements

• Some requirements given as invariants
– “When the brake pedal is depressed, the p p

cruise control must disengage”
• State machines can be viewed as invariants

– States: values of variables
– Transitions: invariants

“If th t t t i A th th t t t– “If the current state is A then the next state
can be B”

• Another project with Robert Bosch• Another project with Robert Bosch
©2011 University of Maryland 16

Invariant Reconstruction

• Generate test data satisfying coverage
criteria

• Use machine learning to propose invariants
• Check invariants using instrumentation-based g

verification

©2011 University of Maryland 17

Machine Learning: AssociationMachine Learning: Association
Rule Mining

• Tools for inferring relationships among
variables based on time-series data
– Input: table

– Output: relationships (“association rules”)
e g 0 ≤ x ≤ 3 -> y ≥ 0e.g. 0 ≤ x ≤ 3 > y ≥ 0

©2011 University of Maryland 18

Association Rules and InvariantAssociation Rules and Invariant
Reconstruction

• General dea
– Treat tests (I/O sequences) as data
– Use machine learning to infer relationships

between inputs, outputs
O i i ht• Our insight
– Ensure test cases satisfy coverage criteria to

ensure “thoroughness”ensure thoroughness
– Use IBV to double-check proposed

relationships

©2011 University of Maryland 19

Pilot Study: ProductionPilot Study: Production
Automotive Application

• Artifacts
– Simulink model (ca. 75 blocks)
– Requirements formulated as state machine
– Requirements correspond to 42 invariants

defining transition relationdefining transition relation
• Goal: Compare our approach, random testing

[Raz][Raz]
– Completeness (% of 42 detected?)
– Accuracy (% false positives?)y (p)

©2010 Fraunhofer USA Inc. 20

Experimental Results

• Hypothesis: coverage-testing yields better invariants than
random testing

• Coverage results:Coverage results:

95% of inferred invariants true
97% of requirements inferred
Two missing requirements detected

• Random results:

55% f i f d i i t t55% of inferred invariants true
40% of requirements inferred

• Hypothesis confirmedyp

©2010 Fraunhofer USA Inc. 21

Summary

• Intersection of formal methods, testing can
yield practical verification approachesy p pp
– Model-based testing
– Instrumentation-based verification

• Automated test generation can be used to
infer invariants

©2011 University of Maryland 22

