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This Talk

Some recent developments in software 
verification and testingg
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Software Verification?

• Related to, but different from, IEEE definition
• Traditionally, in CS: formal methodsTraditionally, in CS:  formal methods

– Given software, spec
• Software = “code”Software  code
• Spec = “requirement” = logical formula

Prove software meets spec– Prove software meets spec
• (Informal verification often called “validation”.)
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Model Checking

• Verification = proof
• Model checking: automated proof!Model checking:  automated proof!

– Given software, spec
– Model checker tries to build proofModel checker tries to build proof

• Ongoing research:  applicability
Decidability– Decidability

– Scalability
• Embedded control applications!• Embedded control applications!
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Software Testing

• Most often-used method for checking 
software correctness
– Select tests
– Run software on tests
– Analyze results

• Traditionally
M l h ti i i– Manual, hence time-consuming, expensive

– In control applications:  hard to test 
software by itselfsoftware by itself
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Exciting Developments

• Combine
– Formal specsFormal specs
– Testing

• To automate testing “scalably”To automate testing scalably
– Model-based testing

Instrumentation based verification– Instrumentation-based verification
– Requirements reconstruction
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Model-Based Testing

• Develop specs as executable models
– SimulinkSimulink
– State machines
– EtcEtc.

• Use model to determine correct test response
Automates “results analysis”– Automates results analysis

– Models, tests needed
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Model-Based Testing (cont.)

CTests Compare
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Tests Can Be Generated fromTests Can Be Generated from 
Models!

TestTest
Gen

Model Tests

• Functionality provided by tools like Reactis® for Simulink / 
StateflowStateflow

• Goal:  automate test generation task by creating tests that 
cover model logic

• Reactis: guided simulation algorithm• Reactis:  guided simulation algorithm
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Applying Model-Based Testing

• Widespread in automotive, less so in aero / 
medical-device
– Regulatory issues
– Need for models
– Modeling notations, support

• What about models?What about models?
– Sometimes result of earlier design phases
– Models as reusable testing infrastructureModels as reusable testing infrastructure
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Challenges

• Technical
– Algorithms for test generationAlgorithms for test generation
– Modeling languages

• ProceduralProcedural
– Integration into existing QA processes

Regulatory considerations– Regulatory considerations
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Instrumentation BasedInstrumentation-Based 
Verification

• Model-based testing assumes model correct
• IBV:  a way to check model correctness vis a vis

requirementsrequirements

Requirements

Specificationsmodels

•Designmodels

©2011 University of Maryland 11



Instrumentation BasedInstrumentation-Based 
Verification:  Requirements

• Verification needs 
formalized 
requirementsrequirements

• IBV:  formalize 
requirements as 

it d lmonitor models

• Example
“If d i < 30“If speed is < 30, 
cruise control must 
remain inactive”
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I t t ti B d V ifi tiInstrumentation-Based Verification: 
Checking Requirements

• Instrument design 
model with monitors

• Use coverage testingUse coverage testing 
to check for monitor 
violations

• Tool: Reactis®Tool: Reactis®
– Product of Reactive 

Systems, Inc. 
– SeparatesSeparates 

instrumentation, design
– More info:  

www.reactive-
systems comsystems.com
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Applying Instrumentation BasedApplying Instrumentation-Based 
Testing

• Robert Bosch production automotive application
– Requirements:  300-page document

10 b t f li d (20% f t )– 10 subsystems formalized (20% of system)
• 62 requirements formalized as monitor 

models
• IBV applied
• 11 requirements issues identified

• Another Bosch case study: product line• Another Bosch case study:  product-line 
verification using IBV

• A number of other case studies
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Requirements Reconstruction

• The Requirements Reconstruction problem

– Given:  software

– Produce:  requirements

• Why?

– System comprehension

– Specification reconstruction

• Missing / incomplete / out-of-date documentation
• “Implicit requirements” (introduced by developers)
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Invariants as Requirements

• Some requirements given as invariants
– “When the brake pedal is depressed, the p p

cruise control must disengage”
• State machines can be viewed as invariants

– States:  values of variables
– Transitions:  invariants

“If th t t t i A th th t t t– “If the current state is A then the next state 
can be B”

• Another project with Robert Bosch• Another project with Robert Bosch
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Invariant Reconstruction

• Generate test data satisfying coverage 
criteria

• Use machine learning to propose invariants
• Check invariants using instrumentation-based g

verification
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Machine Learning: AssociationMachine Learning:  Association 
Rule Mining

• Tools for inferring relationships among 
variables based on time-series data
– Input:  table

– Output:  relationships (“association rules”)
e g 0 ≤ x ≤ 3 -> y ≥ 0e.g.   0 ≤ x ≤ 3  > y ≥ 0
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Association Rules and InvariantAssociation Rules and Invariant 
Reconstruction

• General dea
– Treat tests (I/O sequences) as data
– Use machine learning to infer relationships 

between inputs, outputs
O i i ht• Our insight
– Ensure test cases satisfy coverage criteria to 

ensure “thoroughness”ensure thoroughness
– Use IBV to double-check proposed 

relationships
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Pilot Study: ProductionPilot Study:  Production 
Automotive Application

• Artifacts
– Simulink model (ca. 75 blocks)
– Requirements formulated as state machine
– Requirements correspond to 42 invariants 

defining transition relationdefining transition relation
• Goal:  Compare our approach, random testing 

[Raz][Raz]
– Completeness (% of 42 detected?)
– Accuracy (% false positives?)y ( p )
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Experimental Results

• Hypothesis:  coverage-testing yields better invariants than 
random testing

• Coverage results:Coverage results:

95% of inferred invariants true
97% of requirements inferred
Two missing requirements detected

• Random results:

55% f i f d i i t t55% of inferred invariants true
40% of requirements inferred

• Hypothesis confirmedyp
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Summary

• Intersection of formal methods, testing can 
yield practical verification approachesy p pp
– Model-based testing
– Instrumentation-based verification

• Automated test generation can be used to 
infer invariants

©2011 University of Maryland 22


