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Outline

• What is CMACS?

• What is Model Checking?

• Model Checking Example

• Applying MC to Heart Cells
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Pump System Specification

• 5-Year, $10M NSF Expedition in Computing Award
• 7 academic institutions + NASA JPL 
• 18 Principal Investigators, with Ed Clarke of CMU the 

Lead Investigator  
• Seek to apply next-generation Model Checking and 

Abstract Interpretation techniques to Biological and 
Embedded Systems 

• Challenge problems in Pancreatic Cancer, Atrial
Fibrillation, and Automotive & Aerospace systems
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Model Checking

?
M ╞ φ

Does system model M satisfy system property φ?
M given as a state machine.

φ usually specified in temporal logic.
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Clarke Emerson Sifakis Receive 2007 Turing Award

… they developed this fully automated approach [Model Checking] 
that is now the most widely used verification method in the 
hardware and software industries.
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Model Checking
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What is Model Checking?

[Clarke & Emerson 1981]:
“Model checking is an automated technique that, given a 
finite-state model of a system and a logical property, 
systematically checks whether this property holds for (a 
given initial state in) that model.”

Model checking tools automatically verify whether M╞ φ
holds, where M is a (finite-state) model of a system and 
property φ is stated in some formal notation.

Problem: state space explosion! Although finite-state, the
model of a system typically grows exponentially.
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Common Design Flaws in Concurrent Systems

• Deadlock
• Livelock, starvation
• Underspecification

– unexpected reception of messages
• Overspecification

– Dead code
• Violations of constraints

– Buffer overruns
– Array bounds violations

• Assumptions about speed
– Logical correctness vs. real-time performance
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System Development
System
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Classic “waterfall model”
[Pressman 1996]
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The SMV Model Checker

• Developed at CMU in the 1990s

• System model given as an FSA

• System properties given as CTL formulas
• SMV program has 3 parts: 

– (finite) variable declarations
– (nondeterministic) variable assignments
– property specification
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A Simple Two-Tank Pumping System

Source
Tank

Sink
Tank
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Pump System Specification

• Initially, both tanks are empty. 
• Pump switched on as soon as water level in 

tank A reaches ok, provided tank B not full. 
• Pump remains on as long as tank A not empty

and tank B not full. 
• Pump switched off as soon as tank A empty or 

tank B full. 
• System should not attempt to switch the pump

off (on) if it's already off (on). 
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Pumping System Specification (Part I)

MODULE main

VAR
level_a : {empty, ok, full}; -- source tank
level_b : {empty, ok, full}; -- sink tank
pump : {on, off};

Comments
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Pumping System Specification (Part II)

ASSIGN
next(level_a) := case

level_a = empty : {empty, ok};
level_a = ok & pump = off : {ok, full};
level_a = ok & pump = on : {ok, empty, full};
level_a = full & pump = off : full;
level_a = full & pump = on : {ok, full};
1 : {ok, empty, full};

esac;
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Pumping System Specification (Part III)

next(level_b) := case
level_b = empty & pump = off : empty;
level_b = empty & pump = on : {empty, ok};
level_b = ok & pump = off : {ok, empty};
level_b = ok & pump = on : {ok, empty, full};
level_b = full & pump = off : {ok, full};
level_b = full & pump = on : {ok, full};
1 : {ok, empty, full};

esac;
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Pumping System Specification (Part IV)

next(pump) := case
pump = off & (level_a = ok | level_a = full) &
(level_b = empty | level_b = ok) : on;
pump = on & (level_a = empty | level_b = full) : off;
1 : pump; -- keep pump status as it is

esac;

INIT
(pump = off)



18

Pumping System Specification (Part V)

SPEC

-- pump is always off if source tank is empty or sink tank is full
AG AF (pump = off -> (level_a = empty | level_b = full))

-- always possible to reach a state when the source tank is ok or full
AG EF (level_b = ok | level_b = full)
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Model Executions
• Initially, system could be in any of nine states where no 

restrictions on water level in A or B but the pump is off 
• Denote a state by an ordered tuple <A,B,P> where A and B

are current water level in tank A and B, and P is current pump 
status

• Assume initial state to be <empty,empty,off>
• Next state could be <empty,empty,off> or <ok,empty,on>
• From <ok,empty,on>, next state could be <ok,empty,on>, 

<ok,ok,on>, <full,empty,on>, <full,ok,on>, <empty,empty,off>, 
or <empty,ok,off>. 

• For each of these states, we could calculate next possible 
states
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Initial Portion of Execution Tree
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CTL Operators

true in current state if every state in every path beginning in current state satisfies the formula φAG φ

true in current state if there exists some state in every path beginning in current state that satisfies the formula φAF φ

true in current state if formula φ is true in every one of the next statesAX φ

true in current state if every state in some path beginning in current state satisfies the formula φEG φ

true in current state if there exists some state in some path beginning in current state that satisfies the formula φEF φ

true in current state if formula φ is true in at least one of the next statesEX φ

The temporal logic CTL allows us to specify properties
of paths (and states along paths) of an execution tree.
It is an extension of Boolean propositional logic.

E (for some path) and A (for all paths) are path quantifiers
for paths beginning from a state.  F (for some state) and G
(for all states) are state quantifiers for states along a path. 
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Intuition for CTL Operators
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Simple CTL Properties of Pump System

• AF (pump = on).  For every path beginning at initial 
state, there's state in that path at which pump is on. 

• False, since there's a path from initial state in which 
the pump always remains off (e.g., if tank A forever 
remains empty). 

• SMV generates following counterexample.  (Loop 
indicates infinite sequence of states beginning at 
initial state such that tank B is full in every state of 
path and hence pump is off.)
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SMV Counterexample

-- specification AF pump = on is false
-- as demonstrated by following execution 

sequence
-- loop starts here

state 1.1:
level_a = full
level_b = full
pump = off 
state 1.2:
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Another Simple CTL Property

• Dual property AF (pump = off).  For every 
path beginning at initial state, there's a state 
in that path at which the pump is off. 

• Trivially true, since in the initial state itself 
(which is included in all paths) pump = off is
true. 
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What does MC have to do with Bio?

• And what does it have to do with heart cells, 
and atrial fibrillation, and … ? 

• Can view Flavio’s minimal model as a special 
kind of state machine and try to apply MC to 
that! 
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Stimulated

Hybrid Automaton Model: Cardiac Cell
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Stimulated

off Us v V ons
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Hybrid Automaton Model: Cardiac Cell
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Stimulated
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Hybrid Automaton Model: Cardiac Cell

P. Ye, E. Entcheva, S.A. Smolka and R. Grosu. A Cycle-Linear 
Hybrid-Automata Model for Excitable Cells. IET Systems Biology, 
vol. 2(1), pp. 24-32, January, 2008.
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HA Network (Spatial) Simulation 

• Fibrillation/Defibrillation protocol
• 400 x 400 HA cell array
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(Finite) Mode Abstraction

• Preserves spatial properties (4160,000 images)
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CMACS Wants You!

• NSF REUs

• Summer Internships

• RAs in CMACS graduate programs
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Emergent Behavior in Cardiac Tissue

ECG

Surface


