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- What is CMACS?

* What is Model Checking?
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- Applying MC to Heart Cells



5-Year, $10M NSF Expedition in Computing Award
/ academic institutions + NASA JPL

18 Principal Investigators, with Ed Clarke of CMU the
Lead Investigator

Seek to apply next-generation Model Checking and
Abstract Interpretation techniques to Biological and
Embedded Systems

Challenge problems in Pancreatic Cancer, Atrial
Fibrillation, and Automotive & Aerospace systems
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Model Checking

Does system model M satisfy system property ¢?

M given as a state machine.
¢ usually specified in temporal logic.



Clarke Emerson Sifakis Receive 2007 Turing Award

... they developed this fully automated approach [Model Checking]
that is now the most widely used verification method in the
hardware and software industries.
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Model Checking

Answer:
System Model Yes if model sat
Checkin property
Model 9 Counterexample
7 Tool otherwise

System
Property
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What is Model Checking?

[Clarke & Emerson 1981]:

“Model checking is an automated technique that, given a
finite-state model of a system and a logical property,
systematically checks whether this property holds for (a
given initial state in) that model.”

Model checking tools automatically verify whether M |= ()
holds, where M is a (finite-state) model of a system and
property @ is stated in some formal notation.

Problem: state space explosion! Although finite-state, the
model of a system typically grows exponentially.



Common Design Flaws in Concurrent Systems

» Deadlock
« Livelock, starvation
» Underspecification
— unexpected reception of messages
» Overspecification
— Dead code
* Violations of constraints
— Buffer overruns
— Array bounds violations
« Assumptions about speed
— Logical correctness vs. real-time performance
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The SMV Model Checker

+ Developed at CMU in the 1990s

+ System model given as an FSA

+ System properties given as CTL formulas

* SMV program has 3 parts:
- (finite) variable declarations
- (nondeterministic) variable assignments
- property specification
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A Simple Two-Tank Pumping System

Pump

Source Sink
Tank Tank
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Pump System Specification

* Initially, both tanks are empty.

 Pump switched on as soon as water level in
tank A reaches ok, provided tank B not full.

 Pump remains on as long as tank A not empty
and tank B not full.

 Pump switched off as soon as tank A empty or
tank B full.

« System should not attempt to switch the pump
off (on) if it's already off (on).
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Pumping System Specification (Part I)

MODULE main ST

VAR
level _a : {empty, ok, full}; -- source taNk
level b : {empty, ok, full}; -- sink tank
pump : {on, off};
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Pumping System Specification (Part IT)

ASSIGN

next(level _a) := case
level _a = empty : {empty, ok};
level_a = ok & pump = off : {ok, full};
level _a = ok & pump = on : {ok, empty, full};
level _a = full & pump = off : full;
level _a = full & pump = on : {ok, full};
1 : {ok, empty, full};

esac;
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Pumping System Specification (Part IIT)

next(level b) := case
level b = empty & pump = off : empty;
level b = empty & pump = on : {empty, ok};
level b = ok & pump = off : {ok, empty};
level b = ok & pump = on : {ok, empty, full};
level_b = full & pump = off : {ok, full};
level b = full & pump = on : {ok, full};
1 : {ok, empty, full};

esac;
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Pumping System Specification (Part IV)

next(pump) := case
pump = off & (level_a = ok | level _a = full) &
(level_b = empty | level b = ok) : on;
pump = on & (level_a = empty | level b = full) : off;
1 : pump; -- keep pump status as it is
esac;

INIT
(pump = off)
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Pumping System Specification (Part V)

SPEC

-- pump is always off if source tank is empty or sink tank is full
AG AF (pump = off -> (level_a = empty | level_b = full))

-- always possible to reach a state when the source tank is ok or full
AG EF (level_b = ok | level_b = full)
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Model Executions

« Initially, system could be in any of nine states where no
restrictions on water level in A or B but the pump is off

* Denote a state by an ordered tuple <A,B,P> where A and B
are current water level in tank A and B, and P is current pump
status

« Assume initial state to be <empty,empty,off>
* Next state could be <empty,empty,off> or <ok,empty,on>

 From <ok,empty,on>, next state could be <ok,empty,on>,
<ok,ok,on>, <full,empty,on>, <full,ok,on>, <empty,empty,off>,
or <empty,ok,off>.

* For each of these states, we could calculate next possible
states
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Initial Portion of Execution Tree
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CTL Operators

The temporal logic CTL allows us to specify properties
of paths (and states along paths) of an execution tree.
It is an extension of Boolean propositional logic.

EX @ true in current state if formula ¢ is true in at least one of the next states

EF @ true in current state if there exists some state in some path beginning in current state that satisfies the formula ¢
EG ¢ true in current state if every state in some path beginning in current state satisfies the formula ¢

AX ¢ true in current state if formula @ is true in every one of the next states

AF @ true in current state if there exists some state in every path beginning in current state that satisfies the formula ¢

AG ¢ true in current state if every state in every path beginning in current state satisfies the formula ¢

E (for some path) and A (for all paths) are path quantifiers
for paths beginning from a state. F (for some state) and G
(for all states) are state quantifiers for states along a path.
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Intuition for CTL Operators
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Simple CTL Properties of Pump System

 AF (pump = on). For every path beginning at initial
state, there's state in that path at which pump is on.

* False, since there's a path from initial state in which

the pump always remains off (e.g., if tank A forever
remains empty).

 SMV generates following counterexample. (Loop
indicates infinite sequence of states beginning at
initial state such that tank B is full in every state of
path and hence pump is off.)
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SMV Counterexample

-- specification AF pump = on is false

-- as demonstrated by following execution
sequence

-- loop starts here
state 1.1:
level _a = full
level b = full
pump = off

state 1.2:
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Another Simple CTL Property

* Dual property AF (pump = off). For every
path beginning at initial state, there's a state
in that path at which the pump is off.

 Trivially true, since in the initial state itself
(which is included in all paths) pump = off is
true.
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What does MC have to do with Bio?

 And what does it have to do with heart cells,
and atrial fibrillation, and ... ?

« Can view Flavio’s minimal model as a special

kind of state machine and try to apply MC to
that!
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Hybrid Automaton Model: Cardiac Cell
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Hybrid Automaton Model: Cardiac Cell
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Hybrid Automaton Model: Cardiac Cell
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P. Ye, E. Entcheva, S.A. Smolka and R. Grosu. A Cycle-Linear
Hybrid- Automata Model for Excitable Cells. IET Systems Biology,
vol. 2(1), pp. 24-32, January, 2008.

29



I —
HA Network (Spatial) Simulation
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(Finite) Mode Abstraction
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CMACS Wants Youl

- NSF REUs

- Summer Internships

* RAs in CMACS graduate programs
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I'LL CLIMB UP THIS
STRAND OF DNA TO SEE
WHERE LIFE TAKES ME

(] Original Artist
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Emergent Behavior in Cardiac Tissue
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