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Algorithmic Foundations

Algorithmic Foundations

BioNetGen
M. W. Sneddon, J. R. Faeder, T. Emonet. Efficient modeling, simulation and
coarse-graining of biological complexity with NFsim, Nature Methods, Vol. 8, No. 2,
2011.

Boolean Models
H. Gong, P. Zuliani, E. M. Clarke. Model Checking of a Diabetes-Cancer Model,
3rd International Symposium on Computational Models for Life Sciences, 2011.

Statistical Model Checking
E. M. Clarke, J. R. Faeder, C. Langmead, L. Harris, S. Jha, A. Legay. Statistical
model checking in biolab: Applications to the automated analysis of t-cell receptor
signaling pathway, Computational Methods in Systems Biology, 2008.
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Algorithmic Foundations

Algorithmic Foundations

Models from Data
Mechanistic

S. Ryu, S. Lin, N. Ugel, M. Antoniotti, B. Mishra. Mathematical modeling of
the formation of apoptosome in intrinsic pathway of apoptosis, Systems and
Synthetic Biology Journal, vol. 2, no. 1–2, 2009.

Phenomenological
N. Ramakrishnan, S. Tadepalli, L. T. Watson, R. F. Helm, M. Antoniotti, B.
Mishra. Reverse Engineering Dynamic Temporal Models of Biological
Processes and their Relationships,” , Proc. National Academy of Science, vol.
107, no. 28, 2010.
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Algorithmic Foundations

Algorithmic Foundations

Hybrid Model Checking
C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, B. Mishra. Algorithmic
Algebraic Model Checking I: Challenges from Systems Biology, 17th International
Conference on Computer Aided Verification, 2005.

Supervisory Control
L. Olde Loohuis, A. Witzel, B. Mishra. Cancer Hallmark Automata, manuscript,
2011.
E. Asarin, O. Maler, A. Pnueli. Symbolic controller synthesis for discrete and timed
systems, Hybrid Systems II, 1995.
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Cancer: A short overview Disease of the Genome

Cancer as a Disease of the Genome

Oncogenes / Tumor Suppressor Genes

Cancer pathways
Cancer phenotypes and progression (hallmarks)
Patient data and personalization

The Cancer Genome Atlas, GOALIE, statistical analysis

Model checking on different levels of abstraction
Model-based therapy
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Regulatory pathways: Mechanistic modeling
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Regulatory pathways: Mechanistic modeling Background

Single-cell Pathways in Cancer

Cancer can be understood in terms of various cell-autonomous
processes: Autophagy, Apoptosis, Mitosis
There are specific pathways controlling these processes
We have developed mechanistic models involving these pathways, e.g.,
ODEs, BioNetGen models, and Boolean models
Properties of these pathways can be model checked in order to
understand them
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Regulatory pathways: Mechanistic modeling CMACS research

HMGB1 Model
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Regulatory pathways: Mechanistic modeling CMACS research

Boolean Model

	  Release	  
cytokines	  that	  
s/mulate	  the	  

immune	  
response	  

Release	  
cytokines	  that	  
inhibit	  the	  
immune	  
response	  

Tumor	  	  
cell	  

An/gen	  
presen/ng	  
cell	  (APC)	  

Naïve	  T	  
cell	  

Tumor	  secreted	  cytokines	  
(e.g.,	  TGFβ)	  

Regulatory	  T	  
(Treg)	  cells	  

Helper	  T	  (Th)	  
cells	  

Miskov-‐Zivanov,	  Turner,	  Morel,	  and	  Faeder	  

Pancrea6c	  cancer	  vaccine	  trial:	  	  
Lepisto	  et	  al.,	  Cancer	  Ther	  6:955-‐964	  (2008)	  	  
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Regulatory pathways: Mechanistic modeling CMACS research

Model Simulation

1000	  simula6on	  
trajectories	  

Average	  trajectories	  of	  ten	  
elements	  for	  aKractor	  
1010111001	  

Check	  proper6es	  of	  the	  
transi6on	  diagram	  

(aKractor)	  

-‐ effects	  of	  transient	  
changes	  
-‐ 	  element	  correla6ons	  
-‐ 	  stochas6city	  in	  the	  most	  
connected	  nodes	  

Compare	  and	  contrast	  
different	  aKractors	  

State	  transi6ons	  on	  
trajectories	  leading	  to	  
aKractor	  1010111001	  	  
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Regulatory pathways: Mechanistic modeling CMACS research

Statistical Model Checking

In English:
p53 is expressed at low level in normal human cells

In temporal logic:
Prob≥0.9Ft(G900(p53 < 3.3 · 104))

Verification:

t(min) # Samples # Success Result Time (s)
400 53 49 True 597.59
500 23 22 True 271.76
600 22 22 True 263.79

Error probability = 0.001

Bud Mishra (speaker) CMACS Pancreatic Cancer Challenge November 2011 16 / 44



Regulatory pathways: Mechanistic modeling CMACS research

Contribution

First computational model for investigating HMGB1 and tumorigenesis;
it agrees well with HMGB1 experiments
Our model suggests a dose-dependent p53, CyclinD/E, NFkB response
curve to increasing HMGB1 stimulus

this could be tested by future experiments
The model can provide a guideline for cancer researchers to design new
in vitro experiments
Statistical Model Checking automatically validates our model with
respect to known experimental results
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Signaling pathways: Multi-scale modeling
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Signaling pathways: Multi-scale modeling Background

Aberrant Inter-cell Signaling
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Signaling pathways: Multi-scale modeling CMACS research

Boolean Network

249 states → activation � inhibition
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Signaling pathways: Multi-scale modeling CMACS research

Model Checking

Do diabetes risk factors influence the risk of cancer or cancer
prognosis? We checked the CTL properties:

(1) AF(Proliferate)

(2) AF(Apoptosis)

(3) AF(Resistance)

(1′) EF(Proliferate)

(2′) EF(Apoptosis)

(3′) EF(Resistance)

Normal Cell:
Properties 3 and 2′ − 3′ are true
Diabetes risk factors can augment insulin resistance, but cell growth is
still regulated by the tumor suppressor proteins
Cancer risk might not increase

Precancerous/Cancerous Cells (INK4a, ARF= 0):
All but Property 2 are true
Diabetes risk factors promote growth in precancerous or cancerous cells
and augment insulin resistance
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Signaling pathways: Multi-scale modeling CMACS research

Abstract Signaling Machine (ASM)

ASM simulates few concrete cells in mean field population model
Environment

1 Local information I =< i1 . . . in >
2 Signaling environment E =< e1 . . . em >

Cells
1 Concrete cells: signal transduction pathways, genes etc. state

X =< x1 . . . xr >, xi ∈ R and xi ≥ 0
2 Abstract cells: abstract internal state Σ ∈ R

Abstract Concrete
take action Σ→ Σ +A X → X +A
send signal Σ→ Σ + S X → X + S
change state Σ + I + E → Σ X + I + E → X
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Signaling pathways: Multi-scale modeling CMACS research

Taxol Example

taxol

Abstractly Signaling Cells

Concrete Cell

Liver Model
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Signaling pathways: Multi-scale modeling CMACS research

Hallmarks and Model Checking in ASM
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Tumor progression: High-level modeling
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Tumor progression: High-level modeling Background

Hallmarks of Cancer

D. Hanahan and R. A. Weinberg. Hallmarks of Cancer: The Next Generation, Cell, vol.
144, no. 5, pp. 646-674, 2011.

J. Luo, N. L. Solimini, and S. J. Elledge. Principles of Cancer Therapy: Oncogene and
Non-oncogene Addiction, Cell, vol. 136, no. 5, pp. 823-837, Mar. 2009.
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Tumor progression: High-level modeling Background

Tumor Progression
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Tumor progression: High-level modeling Background

Growing Lists of Therapies

J. Luo, N. L. Solimini, and S. J. Elledge. Principles of Cancer Therapy: Oncogene and
Non-oncogene Addiction, Cell, vol. 136, no. 5, pp. 823-837, Mar. 2009.
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Tumor progression: High-level modeling CMACS research

Cancer Hallmark Automata (CHA)

Formalism to represent the “hallmark view” of cancer
Represent progression models as Kripke structure / finite automaton
Personalize model to specific cancer type and stage of patient
Includes specifications of:

disease progression through hallmarks
timings of transitions
tests to observe disease state
effects of drugs on the system
costs of hallmarks and drugs (pain, monetary, . . . )
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Tumor progression: High-level modeling CMACS research

Example CHA

E.g., AG¬met will yield therapies that give
Rapamycin, or Avastin and 3BP, if the patient comes at early stage
Avastin at stage 3 and 4 and PRIMA-1 at stage 9 and 14 if 3BP has high toxicity
3BP at stage 3 and 4 and PRIMA-1 at stage 7 and 12 if the patient’s genome indicates
adverse reaction to Avastin
PRIMA-1 if the disease status is advanced but unknown
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Tumor progression: High-level modeling CMACS research

Timed CHA

A timed CHA consists of
a set of states, corresponding to hallmarks
a set of directed edges between states, labeled with clock constraints
an invariant for each clock and state (time limit)
a factor for each tuple of drug, clock and state (slow-down or speed-up)
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Tumor progression: High-level modeling CMACS research

Including Partial Observability

Timed state: pair of state and clock values
Belief set: set of timed states considered possible
Runs: possible sequences of timed states and corresponding belief sets

A therapy maps finite runs to therapeutic actions, namely
giving a certain drug or a cocktail, or
performing a test to refine the current belief set

Therapies are assumed to be uniform:
Runs that agree on the belief set sequence map to the same action.

Therapies can be translated into conditional plans.
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Tumor progression: High-level modeling CMACS research

Epistemic-Temporal Goals

KAG≤20¬met

“It is known that metastasis ( met) will not be reached within 20 years”

AG
(
ang→

(
(¬met ∧ AX¬met) U Kang

))
“Whenever the tumor acquires angiogenesis, this will be known (strictly)

before the tumor reaches metastasis”

Bud Mishra (speaker) CMACS Pancreatic Cancer Challenge November 2011 33 / 44



Regression Analysis of Pancreatic Cancer Survival
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Regression Analysis of Pancreatic Cancer Survival

Lasso Penalized Cox Regression for PanCan Survival

Most of existing studies focusing on the identification of the genetic
mutations and not considering the important clinical factor – survival
time
Selection of relevant genes to pancreatic cancer survival from the
genome
Lasso (Least Absolute Shrinkage and Selection Operator) penalized
partial likelihood function of the Cox model
Acceleration of regression coefficient estimation by coordinate descent
Capacity of handling underdetermined problems where the number of
genes far exceeds the number of cases
Tuning constant chosen by cross-validation (data driven)
A handful of important genes retained in the final model with nonzero
coefficients

T. T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression, The
Annals of Applied Statistics, vol. 2, no. 1, 2008.
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Regression Analysis of Pancreatic Cancer Survival

Pancreatic Cancer Data Analysis

Goal: To identify a gene signature of pancreatic cancer survival
Microarray data: 34 patients with primary PDAC tumors from Johns
Hopkins Medical Institutions, 49 from Northwestern Memorial Hospital,
and 19 from NorthShore University Health System

J. K. Stratford, D. J. Bentrem, J. M. Anderson et al. A Six-Gene Signature Predicts
Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma, PLoS Med.,
vol. 7, e1000307, 2010.

66 out of the 102 PDAC patients died at the end of the study (35%
censored)
43,376 genes
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Regression Analysis of Pancreatic Cancer Survival

12-Gene Signature

12 genes identified to be directly related to the survival time of the primary
PDAC patients, and 8 confirmed to be cancer-related in previous cancer
studies:

Genes Functions
RPS13 Promote cell cycle transition from G1 to S
PCYT1B Regulates phosphatidylcholine biosynthesis
TREX2 Proapoptotic tumor suppressor, maintain the genomic integrity
ZNF233 Zinc finger protein, deregulated in kidney and pancreatic cancer
ATPAF1 Regulate oxidative phosphorylation pathway
RIMS1 Down-regulated in multidrug resistance gastric carcinoma
SLC43A2 Overexpressed in adenocarcinomas and squamous cell carcinoma
NRAP Up-regulated in human pancreatic cancer

SLC22A8, C4orf35, C6orf81, and C6orf58
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More Details on T-Cell Boolean Model

Model	  simula,ons	  

Model	  design	  
Model	  elements	  

Influence	  sets	  
(Interac,on	  map)	  

Set	  of	  discrete	  values	  
for	  each	  element	  

Experiments	  
Expert	  

knowledge	  
Literature	  

Influence	  table	  

Model	  rules	  

Model	  
analysis	  

Sta,s,cal	  model	  checker 

Model	  
simula,ons 

Trace	  
sta,s,cs 

More	  
traces

?	  

New	  
model 

New	  
experiments 

Asynchronous	  update	  scheme 000	  

001	  

101	   011	  

111	  
010	  100	  

110	  

p1	  

p2	  

p3	  

X1	  

X3	  
X2	  
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More Details on T-Cell Boolean Model
Biological	  network	   Boolean	  network	  

X1	  

X3	  
X2	  

p1	  

p2	  

p3	  

Proteins:	  	  
p1,	  p2,	  p3	  
	  
Protein	  	  states:	  	  
x1,	  x2,	  x3	  

x1’	  =	  x2	  or	  x3	  
x2’	  =	  not	  x1	  and	  x3	  
x3’	  =	  x1	  and	  not	  x3	  

000	  
001	  

101	  

111	  

110	  

010	  

100	  

011	  

000	  

001	  

101	   011	  

111	  
010	  100	  

110	  

state	   x1x2x3	  
s1	   000	  
s2	   001	  
s3	   010	  
s4	   011	  
s5	   100	  
s6	   101	  
s7	   110	  
s8	   111	  

Synchronous	  updates	   Asynchronous	  updates	  

x1(t+1)	  =	  x2(t)	  or	  x3(t)	  
x2(t+1)	  =	  not	  x1(t)	  and	  x3(t)	  
x3(t+1)	  =	  x1	  (t)	  and	  not	  x3(t)	  
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More Details on T-Cell Boolean Model

APC

MHC

TGF!

TGF!R

CD86

CD28

TCR

"

IL-2 

EX

! #

PI3K

S6K1

PTEN

SMAD3

pS6

Akt

PDK1

TSC1-TSC2

RHEB

mTORC1

mTORC2

PIP3

IL-2R

JAK3

translocation

activation

inhibition

NF-AT NF-$B

AP-1

Ras

ERK

Fos Jun

JNK

STAT5
PKC-% Ca2+

AP-1NF-AT NF-$B IL-2

SMAD3NF-AT STAT5AP-1NF-AT STAT5 FOXP3

Foxp3AP-1NF-AT STAT5 IL-2R!  NF-$B

Foxp3

MEK2 MEK4

Raf MAKK1

ON - high level

ON - low level

OFF

NF-AT NF-$B SMAD3 STAT5

APC

MHC

TGF!

TGF!R

CD86

CD28

TCR

" ! #

PI3K

S6K1

PTEN

SMAD3

pS6

Akt

PDK1

TSC1-TSC2

RHEB

mTORC1

mTORC2

PIP3

IL-2R

JAK3

translocation

activation

inhibition

NF-AT NF-$B

AP-1

Ras

ERK

Fos Jun

JNK

STAT5
PKC-% Ca2+

AP-1NF-AT NF-$B IL-2

SMAD3NF-AT STAT5AP-1NF-AT STAT5 FOXP3

Foxp3AP-1NF-AT STAT5 IL-2R!  NF-$B

Foxp3

MEK2 MEK4

Raf MAKK1

ON - high level

ON - low level

OFF

IL-2 

EX

NF-AT NF-$B SMAD3 STAT5

TCR                                 
PI3K                                 
PTEN                                 
PIP3                                 
AKT                                 
MTORC1                                 
S6K1                                 
MTORC2                                 
STAT5                                 
IL2                                 
CD25                                 
FOXP3                                 

  value = ON_HIGH 
  value = ON_ LOW 
  value = OFF 

TCR                                 
PI3K                                 
PTEN                                 
PIP3                                 
AKT                                 
MTORC1                                 
STAT5                                 
MTORC2                                 
STAT5                                 
IL-2                                 
CD25                                 
FOXP3                                 

Steady	  states	  and	  trajectories	  for	  two	  different	  scenarios	  (high	  and	  low	  anIgen	  dose)	  
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Cox Model for Survival Data

Observed data: {(Yi , δi ,Xi ), where Yi = min{Ti ,Ci}, δi = I(Ti ≤ Ci ),
X ∈ Rp, i = 1, . . . , n
Cox proportional hazards regression model

h(t|X ) = h0(t) exp
( p∑

j=1
βjXj

)

D. R. Cox. Regression models and life-tables, Journal of the Royal Statistical Society.
Series B (Methodological) vol. 34, no. 2, 1972.

Partial likelihood of the Cox model

Ln(β) =
∏
i∈D

exp
(
X t

i β
)

∑
l∈Ri exp

(
X t

l β
)
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Lasso Penalized Partial Likelihood

Important genes related to PC survival can be selected via minimizing

−`n(β) + Pλ(β)

where
`n(β) = log{Ln(β)}/n is convex with positive second derivative
Pλ(β) is the lasso (Least Absolute Shrinkage and Selection Operator)
penalty on β

Pλ(β) = λ
p∑

j=1
|βj |

which is singular at the origin
Minimizing the above objective function can achieve the desired
sparsity hence variable selection
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Challenges for High-Dimensional Lasso Penalized Cox
Regression

One primary question
What is the most effective method of optimizing the lasso penalized
objective function for high-dimensional data?

High-dimensionality (p � n)
Standard methods of regression

Matrix operations
Number of arithmetic operations: O(p3)
Incapable of handling underdetermined problems with p � n

Nondifferentiability of the lasso penalty

Solution
Coordinate descent can solve the two problems gracefully (Wu and Lange
2008)
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