CMACS Pancreatic Cancer Challenge

Edmund Clarke James Faeder Haijun Gong Justin Jee Ilya Korsunsky Bud Mishra Natasa Miskov-Zivanov Loes Olde Loohuis Andreas Witzel Tongtong Wu Paolo Zuliani

November 2011

Justin Jee NYU

Haijun Gong CMU

James Faeder U. Pittsburgh

Ed Clarke CMU

Paolo Zuliani CMU

Bud Mishra NYU

CMACS Pancreatic Cancer Challenge

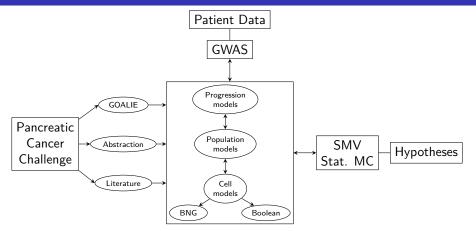
Natasa Miskov-Zivanov U. Pittsburgh

Loes Olde Loohuis NYU

Andreas Witzel NYU

Tongtong Wu U. Maryland

Mission Statement



Build, Reason, Predict, and Manipulate Models of Pancreatic Cancer Spanning Molecular, Cellular, Organ, and Population Levels

Bud Mishra (speaker)

CMACS Pancreatic Cancer Challenge

Outline

Algorithmic Foundations

- 2 Cancer: A short overview
- 3 Regulatory pathways: Mechanistic modeling
 - 4 Signaling pathways: Multi-scale modeling
- 5 Tumor progression: High-level modeling

6 Regression Analysis of Pancreatic Cancer Survival

Outline

Algorithmic Foundations

- 2 Cancer: A short overview
- 3 Regulatory pathways: Mechanistic modeling
- 4 Signaling pathways: Multi-scale modeling
- 5 Tumor progression: High-level modeling
- 6 Regression Analysis of Pancreatic Cancer Survival

Algorithmic Foundations

BioNetGen

M. W. Sneddon, J. R. Faeder, T. Emonet. *Efficient modeling, simulation and coarse-graining of biological complexity with NFsim*, Nature Methods, Vol. 8, No. 2, 2011.

Boolean Models

H. Gong, P. Zuliani, E. M. Clarke. *Model Checking of a Diabetes-Cancer Model*, 3rd International Symposium on Computational Models for Life Sciences, 2011.

Statistical Model Checking

E. M. Clarke, J. R. Faeder, C. Langmead, L. Harris, S. Jha, A. Legay. *Statistical model checking in biolab: Applications to the automated analysis of t-cell receptor signaling pathway*, Computational Methods in Systems Biology, 2008.

Algorithmic Foundations

Models from Data

- Mechanistic
 - S. Ryu, S. Lin, N. Ugel, M. Antoniotti, B. Mishra. Mathematical modeling of the formation of apoptosome in intrinsic pathway of apoptosis, Systems and Synthetic Biology Journal, vol. 2, no. 1–2, 2009.
- Phenomenological

N. Ramakrishnan, S. Tadepalli, L. T. Watson, R. F. Helm, M. Antoniotti, **B.** Mishra. Reverse Engineering Dynamic Temporal Models of Biological Processes and their Relationships,", Proc. National Academy of Science, vol. 107, no. 28, 2010.

Algorithmic Foundations

Hybrid Model Checking

C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler, **B. Mishra**. *Algorithmic Algebraic Model Checking I: Challenges from Systems Biology*, 17th International Conference on Computer Aided Verification, 2005.

Supervisory Control

L. Olde Loohuis, A. Witzel, B. Mishra. Cancer Hallmark Automata, manuscript, 2011.

E. Asarin, O. Maler, **A. Pnueli**. *Symbolic controller synthesis for discrete and timed systems*, Hybrid Systems II, 1995.

Outline

1 Algorithmic Foundations

- 2 Cancer: A short overview
 - 3 Regulatory pathways: Mechanistic modeling
 - 4 Signaling pathways: Multi-scale modeling
 - 5 Tumor progression: High-level modeling
 - 6 Regression Analysis of Pancreatic Cancer Survival

• Oncogenes / Tumor Suppressor Genes

- Oncogenes / Tumor Suppressor Genes
- Cancer pathways

- Oncogenes / Tumor Suppressor Genes
- Cancer pathways
- Cancer phenotypes and progression (hallmarks)

- Oncogenes / Tumor Suppressor Genes
- Cancer pathways
- Cancer phenotypes and progression (hallmarks)
- Patient data and personalization

- Oncogenes / Tumor Suppressor Genes
- Cancer pathways
- Cancer phenotypes and progression (hallmarks)
- Patient data and personalization
 - The Cancer Genome Atlas, GOALIE, statistical analysis

- Oncogenes / Tumor Suppressor Genes
- Cancer pathways
- Cancer phenotypes and progression (hallmarks)
- Patient data and personalization
 - The Cancer Genome Atlas, GOALIE, statistical analysis
- Model checking on different levels of abstraction

- Oncogenes / Tumor Suppressor Genes
- Cancer pathways
- Cancer phenotypes and progression (hallmarks)
- Patient data and personalization
 - The Cancer Genome Atlas, GOALIE, statistical analysis
- Model checking on different levels of abstraction
- Model-based therapy

Outline



3 Regulatory pathways: Mechanistic modeling

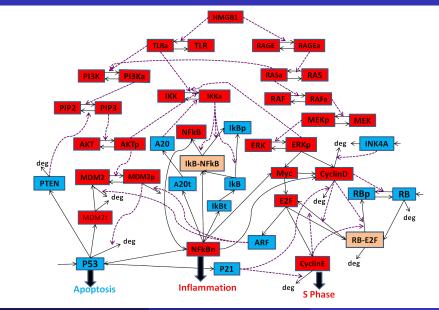
- Background
- CMACS research
- 4 Signaling pathways: Multi-scale modeling
- 5 Tumor progression: High-level modeling

Regression Analysis of Pancreatic Cancer Survival

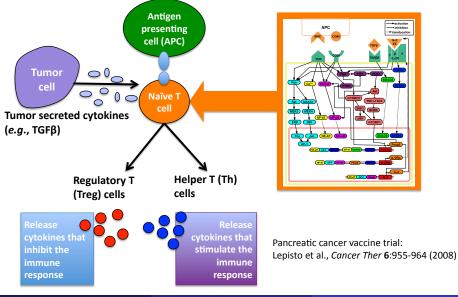
Single-cell Pathways in Cancer

- Cancer can be understood in terms of various cell-autonomous processes: Autophagy, Apoptosis, Mitosis
- There are specific pathways controlling these processes
- We have developed mechanistic models involving these pathways, e.g., ODEs, BioNetGen models, and Boolean models
- Properties of these pathways can be model checked in order to understand them

HMGB1 Model



Boolean Model

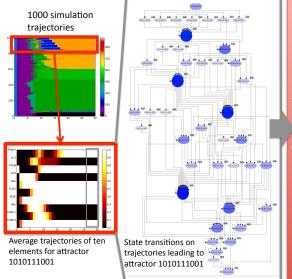


Bud Mishra (speaker)

CMACS Pancreatic Cancer Challenge

November 2011 14 / 44

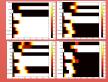
Model Simulation



Check properties of the transition diagram (attractor)

 effects of transient changes
element correlations
stochasticity in the most connected nodes

Compare and contrast different attractors



Bud Mishra (speaker)

CMACS Pancreatic Cancer Challenge

November 2011 15 / 44

Statistical Model Checking

- In English: p53 is expressed at low level in normal human cells
- In temporal logic: $Prob_{\geq 0.9} \mathbf{F}^{t} (\mathbf{G}^{900} (p53 < 3.3 \cdot 10^{4}))$
- Verification:

t(min)	# Samples	# Success	Result	Time (s)
400	53	49	True	597.59
500	23	22	True	271.76
600	22	22	True	263.79

Error probability = 0.001

Contribution

- First computational model for investigating HMGB1 and tumorigenesis; it agrees well with HMGB1 experiments
- Our model suggests a dose-dependent p53, CyclinD/E, NFkB response curve to increasing HMGB1 stimulus
 - this could be tested by future experiments
- The model can provide a guideline for cancer researchers to design new *in vitro* experiments
- Statistical Model Checking automatically validates our model with respect to known experimental results

Outline



2 Cancer: A short overview

3 Regulatory pathways: Mechanistic modeling

4 Signaling pathways: Multi-scale modeling

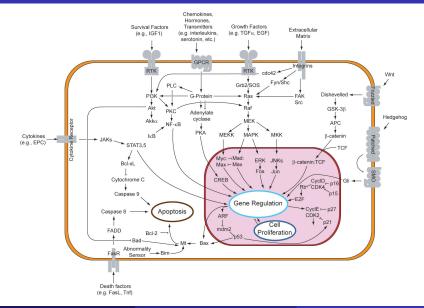
- Background
- CMACS research

5 Tumor progression: High-level modeling

6 Regression Analysis of Pancreatic Cancer Survival

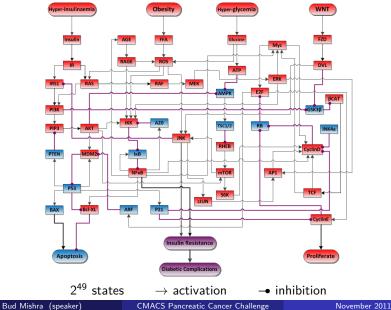
Background

Aberrant Inter-cell Signaling



Bud Mishra (speaker)

Boolean Network



Model Checking

- Do diabetes risk factors influence the risk of cancer or cancer prognosis? We checked the CTL properties:
 - (1) AF(Proliferate) (1') EF(Proliferate)
 - (2) **AF**(Apoptosis) (2') **EF**(Apoptosis)
 - (3) **AF**(Resistance)
- Normal Cell:
 - Properties 3 and 2' 3' are true
 - Diabetes risk factors can augment insulin resistance, but cell growth is still regulated by the tumor suppressor proteins

(3') **EF**(Resistance)

- Cancer risk might not increase
- Precancerous/Cancerous Cells (INK4a, ARF= 0):
 - All but Property 2 are true
 - Diabetes risk factors promote growth in precancerous or cancerous cells and augment insulin resistance

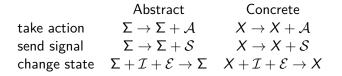
Abstract Signaling Machine (ASM)

ASM simulates few concrete cells in mean field population model Environment

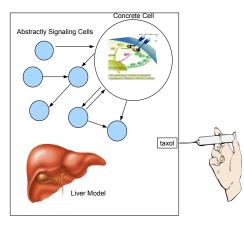
- Local information $\mathcal{I} = \langle i_1 \dots i_n \rangle$
- **2** Signaling environment $\mathcal{E} = \langle e_1 \dots e_m \rangle$

Cells

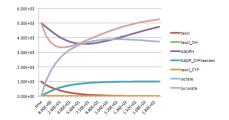
- Concrete cells: signal transduction pathways, genes etc. state $X = < x_1 \dots x_r >, x_i \in \mathbb{R}$ and $x_i \ge 0$
- 2 Abstract cells: abstract internal state $\Sigma \in \mathbb{R}$



Taxol Example

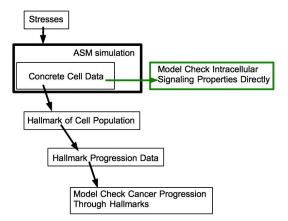


Cancer Cells	Normal Cells	Liver
Dead	Dead	Dead
Dead	Alive	Dead
Dead	Alive	Alive
Alive	Alive	Alive



Metabolite concentrations over time

Hallmarks and Model Checking in ASM

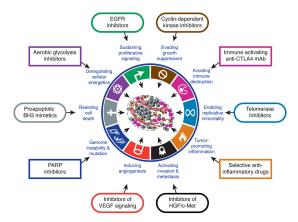


Outline

- 2 Cancer: A short overview
- 3 Regulatory pathways: Mechanistic modeling
- 4 Signaling pathways: Multi-scale modeling
- 5 Tumor progression: High-level modeling
 - Background
 - CMACS research

6 Regression Analysis of Pancreatic Cancer Survival

Hallmarks of Cancer



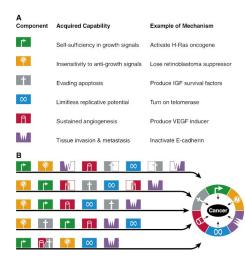
D. Hanahan and R. A. Weinberg. Hallmarks of Cancer: The Next Generation, Cell, vol. 144. no. 5. pp. 646-674. 2011.

J. Luo, N. L. Solimini, and S. J. Elledge. Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction, Cell, vol. 136, no. 5, pp. 823-837, Mar. 2009.

Bud Mishra (speaker)

CMACS Pancreatic Cancer Challenge

Tumor Progression



Background

Growing Lists of Therapies

Agent	Target	Addiction	Halmarks	Potential mechanisms	References
17AAG (small molecule)	HSP90	NOA	0	A geldanamycin analog that binds to the ATP-binding pocket of HSP90 and inhibits its catalytic activity	Whitesell and Lindquist, 2005
1MT, MTH-Trp (small molecule)	IDO	NOA	M	Inhibits tryptophan catabolism in tumor mi- croenvironment to allow T cell proliferation	Muller and Scherle, 2006
5-fluorouracil (small molecule)	DNA	NOA	X	Inhibits pyrimidine metabolism, incorporation in to DNA and RNA causes cell-cycle arrest	Longley et al., 2003
ABT-737, ABT-263 (small molecule)	BCL-XL, BCL-2	OA	1	Bind to the BH3 pocket of Bol-XL and inhibit its antiapoptotic function	Stauffer, 2007
Alvocidib, PD 0332991 (small molecule)	CDKs	OA	P	Inhibit CDKs and induce cell-cycle arrest	Lee and Sicinski, 2006
AP 12009 (antisense oligo)	TGFp 2	NDA		Inhibits tumor autocrine and paracrine signal- ing, reverses immune suppression in the tumor microenvironment	Muller and Scherle, 2006
AZD2281, AG014699 (small molecule)	PARP1	NOA	X	Inhibit base excision repair in homologous recombination repair-deficient cancer cells	Bryant et al., 2005; Farmer et al., 2005
Bevacizumab (antibody)	VEGF	NOA	P	Inhibits endothelial cell recruitment and tumor vasculature	Folkman, 2007
BEZ235 (small molecule)	РВК	OA	r 🖻	Causes cell-cycle arrest in tumor cells and inhibits tumor angiogenesis	Maira et al., 2008
Bortezomib (small molecule)	Proteasome	NOA	0	Inhibits the catalytic activity of 26S proteasome and induces apoptosis	Roccaro et al., 2006
Celecoxib (small molecule)	C0)(2	NOA		Reverses immune suppression in the tumor microenvironment, inhibits tumor autoorine and paracrine signaling	Muller and Scherle, 2006
Cisplatin and analogs (small molecule)	DNA	NOA	X	Induces DNA crosslinks	Siddik, 2003
Erlotinib, Gefitinib (small molecule)	EGFR	OA	r 🕇	Inhibit EGFR tyrosine kinase by competing with ATP binding	Sharma et al., 2007
GRN163L (modified oligo)	hTERT	OA	<u>∞</u>	Mimics telomere sequence and inhibits the hTERT active site	Dikmen et al., 2005; Harley, 2008
GRNVAC1 (cell therapy)	hTERT	0A	<u>~ 1</u>	Autologous dendritic cells transduced to ex- press an hTERT-LAMP fusion protein to elicit T cell response to hTERT + tumor cells	Harley, 2008; Su et al., 2005

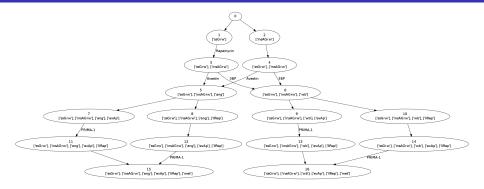
Agent	Target	Addiction	Halmarks	Potential mechanisms	References
GV1001 (peptide)	hTERT	0A	👓 🍸	A short immunogenic peptide from hTERT designed to elicit T cell response against hTERT + tumor cells	Harley, 2008; Nava-Parada and Emens, 2007
Imatinib, Dasatinib (small molecule)	BCR-ABL, c-Kit, Src, PDGFR, other TKs	QA	r +	Tyrosine kinase inhibitor with multiple targets	Quintas-Cardama et al., 2007
Mapatumumab, Lexa- tumumab (antibody)	TRAIL receptor	NOA	+	Bind and activate TRAIL receptors to induce apoptosis	Carlo-Stella et al., 2007
Methotrexate (small molecule)	DHFR	NOA	X	Inhibits thymidine biosynthesis and induces replicative stress	McGuire, 2003
Nutlin-3 (small molecule)	HDM2	0A	+ 0	Binds to HDM2 and inhibits the binding and ubiquitination of p53	Vassilev, 2007
Oblimersen (antisense oligo)	BCL-2	0A	+	Inhibits the expression of BCL-2 by blocking translation of its mRNA	Moreira et al., 2008
Paclitaxel, Vinblastine (small molecule)	Mitotic spindle	NOA	1	Interfere with dynamics and stability of mitotic spindles, activate mitotic checkpoints, and induce chromosome mis-segregation	Weaver and Cleve- land, 2005
PF-00477736 (small molecule)	Chk1	NOA	X	Prevents activation of the DNA damage re- sponse, leading to persistent DNA damage and replication stress	Ashwell and Zablu- doff, 2008
PRIMA-1, MIRA-1 (small molecule)	Mutant p63	TSGH	+ 0	Reactivate the function of mutant p53	Selivanova and Wiman, 2007
Rapamycin, RAD001, Temsirolimus (small molecule)	mTOR	NOA	8	Inhibit protein synthesis	Guertin and Saba- tini, 2007
Retinoic acid (small molecule)	RAR, RXR	0A	<u>∞</u>	Induces cellular differentiation	Spira and Car- ducci, 2003
SAHBs (stapled peptide)	BCL-XL, BCL-2	0A	+	Stapled BH3 domains that bind to BCL-2 family members and promote apoptosis	Verdine and Walen- sky, 2007
Soratenib, Sunitinib (small molecule)	Multiple kinases (VEGFR, RAF, c-Kit, PDGFR)	NOA	A	Inhibit endothelial cell recruitment and tumor vasculature	Folkman, 2007
Topotecan, Irinotecan (small molecule)	Topo-isomerase I	NOA	X	Induce DNA breaks	Pommier, 2006
Trastuzumab (antibody)	ERBB2	0A	r 🖬 🕇	Inhibits ER8B2 activation and induces immune destruction of cancer cells	Hynes and Lane, 2005

J. Luo, N. L. Solimini, and S. J. Elledge. Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction, Cell, vol. 136, no. 5, pp. 823-837, Mar. 2009.

Cancer Hallmark Automata (CHA)

- Formalism to represent the "hallmark view" of cancer
- Represent progression models as Kripke structure / finite automaton
- Personalize model to specific cancer type and stage of patient
- Includes specifications of:
 - disease progression through hallmarks
 - timings of transitions
 - tests to observe disease state
 - effects of drugs on the system
 - costs of hallmarks and drugs (pain, monetary, ...)

Example CHA



E.g., $AG\neg$ met will yield therapies that give

- Rapamycin, or Avastin and 3BP, if the patient comes at early stage
- Avastin at stage 3 and 4 and PRIMA-1 at stage 9 and 14 if 3BP has high toxicity
- 3BP at stage 3 and 4 and PRIMA-1 at stage 7 and 12 if the patient's genome indicates adverse reaction to Avastin
- PRIMA-1 if the disease status is advanced but unknown

Timed CHA

A timed CHA consists of

- a set of states, corresponding to hallmarks
- a set of directed edges between states, labeled with clock constraints
- an invariant for each clock and state (time limit)
- a factor for each tuple of drug, clock and state (slow-down or speed-up)

Including Partial Observability

Timed state: pair of state and clock values Belief set: set of timed states considered possible Runs: possible sequences of timed states and corresponding belief sets

A therapy maps finite runs to therapeutic actions, namely

- giving a certain drug or a cocktail, or
- performing a test to refine the current belief set

Therapies are assumed to be uniform:

Runs that agree on the belief set sequence map to the same action.

Therapies can be translated into conditional plans.

Epistemic-Temporal Goals

 $K\textbf{AG}_{\leq 20} \neg \text{met}$

"It is known that metastasis (met) will not be reached within 20 years"

 $\mathbf{AG}(\mathsf{ang} \to ((\neg\mathsf{met} \land \mathbf{AX} \neg\mathsf{met}) \ \mathbf{U} \ K\mathsf{ang}))$

"Whenever the tumor acquires angiogenesis, this will be known (strictly) before the tumor reaches metastasis"

Outline

- 1 Algorithmic Foundations
- 2 Cancer: A short overview
- 3 Regulatory pathways: Mechanistic modeling
- 4 Signaling pathways: Multi-scale modeling
- 5 Tumor progression: High-level modeling

6 Regression Analysis of Pancreatic Cancer Survival

Lasso Penalized Cox Regression for PanCan Survival

- Most of existing studies focusing on the identification of the genetic mutations and not considering the important clinical factor – survival time
- Selection of relevant genes to pancreatic cancer survival from the genome
- Lasso (Least Absolute Shrinkage and Selection Operator) penalized partial likelihood function of the Cox model
- Acceleration of regression coefficient estimation by coordinate descent
- Capacity of handling underdetermined problems where the number of genes far exceeds the number of cases
- Tuning constant chosen by cross-validation (data driven)
- A handful of important genes retained in the final model with nonzero coefficients

T. T. Wu and K. Lange. *Coordinate descent algorithms for lasso penalized regression*, The Annals of Applied Statistics, vol. 2, no. 1, 2008.

Bud Mishra (speaker)

Pancreatic Cancer Data Analysis

- Goal: To identify a gene signature of pancreatic cancer survival
- Microarray data: 34 patients with primary PDAC tumors from Johns Hopkins Medical Institutions, 49 from Northwestern Memorial Hospital, and 19 from NorthShore University Health System
 - J. K. Stratford, D. J. Bentrem, J. M. Anderson et al. A Six-Gene Signature Predicts Survival of Patients with Localized Pancreatic Ductal Adenocarcinoma, PLoS Med., vol. 7, e1000307, 2010.
- 66 out of the 102 PDAC patients died at the end of the study (35% censored)
- 43,376 genes

12-Gene Signature

12 genes identified to be directly related to the survival time of the primary PDAC patients, and 8 confirmed to be cancer-related in previous cancer studies:

Genes	Functions
RPS13	Promote cell cycle transition from G1 to S
PCYT1B	Regulates phosphatidylcholine biosynthesis
TREX2	Proapoptotic tumor suppressor, maintain the genomic integrity
ZNF233	Zinc finger protein, deregulated in kidney and pancreatic cancer
ATPAF1	Regulate oxidative phosphorylation pathway
RIMS1	Down-regulated in multidrug resistance gastric carcinoma
SLC43A2	Overexpressed in adenocarcinomas and squamous cell carcinoma
NRAP	Up-regulated in human pancreatic cancer

SLC22A8, C4orf35, C6orf81, and C6orf58

Ilya Korsunsky NYU

Bud Mishra NYU

Justin Jee NYU

Haijun Gong CMU

James Faeder U. Pittsburgh

Ed Clarke CMU

Natasa Miskov-Zivanov U. Pittsburgh

Loes Olde Loohuis NYU

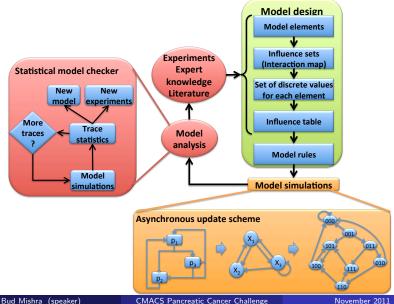
Thank you!

Andreas Witzel NYU

Tongtong Wu U. Maryland

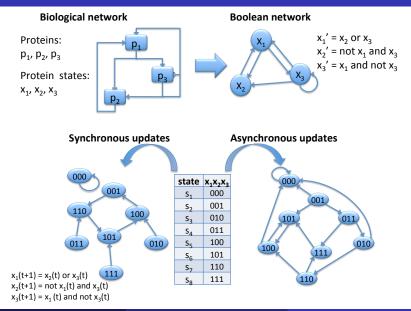
Paolo Zuliani CMU

More Details on T-Cell Boolean Model



39 / 44

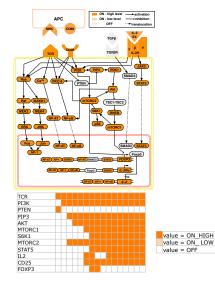
More Details on T-Cell Boolean Model

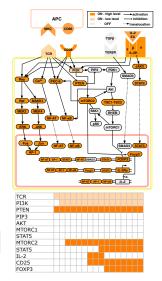


Bud Mishra (speaker)

More Details on T-Cell Boolean Model

Steady states and trajectories for two different scenarios (high and low antigen dose)





Cox Model for Survival Data

- Observed data: { (Y_i, δ_i, X_i) , where $Y_i = \min\{T_i, C_i\}$, $\delta_i = I(T_i \leq C_i)$, $X \in \mathbb{R}^p$, i = 1, ..., n
- Cox proportional hazards regression model

$$h(t|X) = h_0(t) \exp\left(\sum_{j=1}^p \beta_j X_j\right)$$

- D. R. Cox. *Regression models and life-tables*, Journal of the Royal Statistical Society. Series B (Methodological) vol. 34, no. 2, 1972.
- Partial likelihood of the Cox model

$$L_n(\beta) = \prod_{i \in D} \frac{\exp\left(X_i^t\beta\right)}{\sum_{l \in R_i} \exp\left(X_l^t\beta\right)}$$

Important genes related to PC survival can be selected via minimizing

$$-\ell_n(\beta) + P_\lambda(\beta)$$

where

- $\ell_n(\beta) = \log\{L_n(\beta)\}/n$ is convex with positive second derivative
- P_λ(β) is the lasso (Least Absolute Shrinkage and Selection Operator) penalty on β

$$P_{\lambda}(\beta) = \lambda \sum_{j=1}^{p} |\beta_j|$$

which is singular at the origin

• Minimizing the above objective function can achieve the desired sparsity hence variable selection

Challenges for High-Dimensional Lasso Penalized Cox Regression

One primary question

What is the most effective method of optimizing the lasso penalized objective function for high-dimensional data?

- High-dimensionality $(p \gg n)$
 - Standard methods of regression
 - Matrix operations
 - Number of arithmetic operations: $O(p^3)$
 - Incapable of handling underdetermined problems with $p \gg n$
- Nondifferentiability of the lasso penalty

Challenges for High-Dimensional Lasso Penalized Cox Regression

One primary question

What is the most effective method of optimizing the lasso penalized objective function for high-dimensional data?

- High-dimensionality $(p \gg n)$
 - Standard methods of regression
 - Matrix operations
 - Number of arithmetic operations: $O(p^3)$
 - Incapable of handling underdetermined problems with $p \gg n$
- Nondifferentiability of the lasso penalty

Solution

Coordinate descent can solve the two problems gracefully (Wu and Lange 2008)