
gh@jpl.nasa.gov 

Speeding up the Analysis of Complex 

Software with Parallel Model Checking 



time (s) 

2 



PROS 

 simplest search mode for a 
logic model checker 
 basic reachability analysis 

 there is no ordering 
requirement on state 
exploration 
 relatively easy to parallelize 

 always finds the shortest 
counter-example first 

CONS 

1. parallelization requires locks 
and synchronization 

 which can limit performance 

2. often requires more memory 
than a depth-first search 

3. traditionally restricted to the 
subclass of LTL defining 
safety properties 

 invariants, absence of assertion 
violations, absence of deadlock, 
etc. 

3 



 design a lock-free algorithm 

1. lock-free & contention-free queues 

2. a modified cache-aware hash-table 

 

1 0 n 

1 

1 0 n 

0 n 

1 0 n 1 0 n 

1 0 n 1 0 n (current) 

(next) 

initial state 

cores: 

1 

s 

h(s) 

one cache-line 

v 
i 

2 

4 



 both the number of cores and the 
size of RAM grows with Moore’s 
curve: i.e., exponentially fast 
 but clock-speeds remain constant 

 

 this means: 
 memory is not the bottleneck 

 performance is linked to clockspeeds 
unless we exploit parallelism 

source: Olukotun, Hammond, Sutter, Smith, Batten & Asanovic 

5 



safety:      p is invariant 
liveness:   [] ( p -> <> q ) – when p occurs, eventually q will occur as well 

safety properties can be checked with a breadth-first search 
liveness properties are harder: 
 they require a cycle detection algorithm 
 this can be done efficiently with a depth-first search 
 at up to twice the cost of a standard depth-first search 
 
the best known methods for verifying liveness with a breadth-first search     
carry excessive overhead: 
 the cost becomes quadractic, for instance (R=size of graph) 
 if R = 5.106 then 2.R = 10.106, but R2 = 25.1036 

 if R takes 2 seconds, 2.R takes 4 sec, and R2 takes 107 seconds (11 days) 

6 



[] ( p -> <>n q )                                     bounded liveness  
when p happens, q will happen as well within n steps 
<> (p /\ []n !q)       signature of counter-examples 

x 

x x x 

x 
x x x 

n 
PRO: 
     simple to implement 
     adds a small constant memory overhead for 
     propagating tags, but adds virtually no time 
     the cost is: c.R with 1< c <<2 

bounded search 
we perform a check on paths of max length n 

CON: 
to limit memory overhead, we carry only 1 tag field 
this means we can miss counter-examples: we  
accept a small chance of incompleteness 
remarkably: the algorithm works almost always 

7 

“piggyback search” 



49 million states 
reports liveness violations 

[](<>(P[2]@CS)) 

27 million states 
no liveness violations (worst case search) 

[] ((!((req[0]==1))) || ((!((p==0))) U (((p==0)) U 
((!((p==0))) U (((p==0)) U (((p==0)) && ((cabin@open)))))))) 8 



CP: call processing code 
Gurdag: network protocol 
DEOS: operating system code 
EO1: planning code 

9 


