
© 2012 University of Maryland and Fraunhofer USA

Model-Based Verification of

Automotive Controllers

Rance Cleaveland, PhD

Professor of Computer Science, University of Maryland

and

Executive & Scientific Director, Fraunhofer USA Center for

Experimental Software Engineering (CESE)

© 2012 University of Maryland and Fraunhofer USA

This Talk

• Model-based validation

– … of automotive software product lines

– … using instrumentation-based verification

• Talk structure

– Modeling in automotive software development

– Instrumentation-based verification

– Product lines

– An approach to product-line validation

– Conclusions

2

© 2012 University of Maryland and Fraunhofer USA

Automotive Software

• Driver of innovation

90% of new feature content based on software [GM]

• Rising cost

20% of vehicle cost [Conti], 50% for hybrids [Toyota]

• Warranty, liability, quality

High-profile recalls in Germany, Japan, US

3

© 2012 University of Maryland and Fraunhofer USA

A Grand Challenge

• Ensure high quality of automotive software

– ... preserving time to market

– … at reasonable cost

• Key approach: Model-Based Development (MBD)

4

© 2012 University of Maryland and Fraunhofer USA

Traditional Software Development

Requirements / specs /

designs / test plans / etc.

Source code

?

5

© 2012 University of Maryland and Fraunhofer USA

Model-Based Development

Use models (MATLAB® / Simulink®) as designs / specs

Requirements /

test plans / etc. Design / spec Source code

? ?

6

© 2012 University of Maryland and Fraunhofer USA

Model-Based Development (cont.)

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

Main motivation: autocode! Also:
• Models support V&V, testing, communication among engineers
• Models can be managed electronically

7

© 2012 University of Maryland and Fraunhofer USA

Simulink®

• Block-diagram modeling

language / simulator of

The MathWorks, Inc.

• Hierarchical modeling

• Continuous-time and

discrete-time simulation

• Used in MBD of control

software

8

© 2012 University of Maryland and Fraunhofer USA

Stateflow®

9

© 2012 University of Maryland and Fraunhofer USA

Reactis®

A model-based V&V tool from Reactive Systems, Inc.

Tester Generate tests from models (also C)

Simulator Run, fine-tune tests

Validator Validate models / C

Reactis /

Reactis for C

Simulink /

Stateflow /

C
Model / code

10

© 2012 University of Maryland and Fraunhofer USA 11

Generating Tests: Guided Simulation

Reactis systematically generates inputs to drive

simulation runs to cover model, produce test suites.

Reactis

Tester

Test Suitemodel

Generate

Extend

© 2012 University of Maryland and Fraunhofer USA

Generated Test Data

12

© 2012 University of Maryland and Fraunhofer USA

Ongoing Research

Design-time modeling, requirements verification

Requirements

Design

Specificationsmodels

models

13

© 2012 University of Maryland and Fraunhofer USA

Instrumentation-Based Verification

• Model-validation technique supported by

Reactis

• Combines assertions in models, testing

14

© 2012 University of Maryland and Fraunhofer USA

Instrumentation-Based Verification:

Requirements

• Automatic verification
requires formalized
requirements

• IBV: formalize
requirements as
monitor models

• Example
“If speed is < 30, cruise
control must remain
inactive”

15

© 2012 University of Maryland and Fraunhofer USA

Instrumentation-Based Verification: Checking

Requirements

• Instrument design model
with monitors

• Use coverage testing to
check for monitor
violations

• Reactis:

– Separates instrumentation,
design

– Automates test generation

16

© 2012 University of Maryland and Fraunhofer USA

IBV Works

• Three-month case study with Tier-1 automotive supplier on
production system

• Artifacts

– 300-page requirements document

– Some source code

• Results (intern)

– 62 requirements for 10 design features formalized as monitor
models

– Requirements checked on feature models

– 11 inconsistencies in requirements identified

– Key technical insight: architecture for monitor models

17

© 2012 University of Maryland and Fraunhofer USA

From Requirements to Monitors:

A Monitor Model Architecture

“[This] is the complete description of the

control of the CAN output signals can1

and can2 produced by Function A.

Function A can be activated only with in =

1. The activation takes place when either

the CAN bus messages a or b is

present….”

18

© 2012 University of Maryland and Fraunhofer USA

Final Monitor Model Architecture

Need for conditional

requirements

– Behavior only

specified for certain

situations

– “If timeout occurs

do something”

19

© 2012 University of Maryland and Fraunhofer USA

Software Product Lines

• (From SEI): product line = “a set of software-
intensive systems that share a common, managed
set of features satisfying the specific needs of a
particular market segment or mission and that are
developed from a common set of core assets in a
prescribed way”

• Key terms

– Common assets

– Variation points

– Variants

20

© 2012 University of Maryland and Fraunhofer USA

SPL in Automotive

• Toyota: 1,800 variants for engine control software

– Diesel vs. gas vs. hybrid

– Different emissions regulations

– Performance profiles for different markets

– # of cylinders

– Cruise control?

– Etc.

• Product lines offer a framework for streamlining
development, maintenance

• What about V&V?

21

© 2012 University of Maryland and Fraunhofer USA

Variants in Monitor Modeling

• Fine-grained product-line info often captured
at model level

• How can functionality of product-line models
be verified?

– Want to re-use verification effort

– Some requirements are universal (apply to every
variant)

– Others are variant-specific

22

© 2012 University of Maryland and Fraunhofer USA

Example: Cruise Control

• Product line could include following variants

– Maximum-speed restriction or not

– Adaptive or not

– Manual or automatic transmission

• Sample universal requirement

If the brake pedal is pressed, the cruise control shall become
inactive.

• Sample variant-specific requirement

If the transmission is manual, then the cruise control shall become
inactive if the desired speed is inconsistent with the current gear.

23

© 2012 University of Maryland and Fraunhofer USA

How To Do V&V for Product-Line

Models?

• Use IBV!

• Result of industrial study

– Framework for modeling product lines in Simulink

– Strategy, architecture for variant-specific monitor-

models

– Use of IBV to debug models, find requirements

issues

24

© 2012 University of Maryland and Fraunhofer USA

Product-Line Modeling

• Model file defines

control functionality

• Configuration file

defines parameters

• Some parameters

used to define which

variant is intended

Model file

“if num_cyl = 4 …”

Config file

“num_cyl = 6;”

25

© 2012 University of Maryland and Fraunhofer USA

Pilot Study: Cruise Control

• Simulink model is in
Reactis distribution

• Partner adapted it as
sample product-line
model

• Variants

– Max-speed limitation

– Adaptive

– Manual vs. automatic
transmission

– Output interface

26

© 2012 University of Maryland and Fraunhofer USA

Finalizing Product-Line Model in

Simulink / Stateflow

• Program variant selection

– Introduce parameters into model

– Define MATLAB variables for use as parameters

• Product line contained in two files

– cruise_variants.mdl (model)

– cruise_constants.m (MATLAB variables)

27

© 2012 University of Maryland and Fraunhofer USA

cruise_variants.mdl

cruise_constants.m

Parameterized constant

MATLAB variable

28

© 2012 University of Maryland and Fraunhofer USA

Variant-Specific Monitor Models

• Idea

– Configuration files define variant-selection
parameters

– Why not refer to same parameters in monitor
models to introduce variant-specificity?

• Pilot study

– Defined six example variant-specific requirements

– Translated each into monitor model

29

© 2012 University of Maryland and Fraunhofer USA

Example

[MS1] If the maximum-speed
limitation is enabled, the
cruise control shall not
permit the desired (set)
speed to exceed a
designated maximum value.

MATLAB variable
30

© 2012 University of Maryland and Fraunhofer USA

Monitor Model Logistics

• Monitor models

stored in single

Simulink library file

• Monitor models

refer to parameters

cruise_variants.mdl

Product-line model

cruise_variants_monitors.mdl

Monitor models

cruise_constants.m

Parameter file

Include variant-selectors

reads

reads

instrumented by

31

© 2012 University of Maryland and Fraunhofer USA

Verification

• Product-line model

instrumented with

monitor models

• Coverage testing

used to check for

violations

• Reactis® used for

both tasks

32

© 2012 University of Maryland and Fraunhofer USA

Verification Results

• Bugs found in product-line model (fixed)

• Bugs found in monitor model (fixed)

• Variant-interaction problem discovered

– One variant specified maximum speed

– Other variant specified speed-control by adaptive

mechanism

33

© 2012 University of Maryland and Fraunhofer USA

This Talk

Model-based verification of software product

lines

– Model product lines in Simulink / Stateflow

– Variant specificity in monitor models

– Instrumentation-based verification

– Variant interactions!

34

© 2012 University of Maryland and Fraunhofer USA

Larger Issues

• Single models vs. parameterized models

– Typical problem: find parameter settings that ensure

satisfaction of requirements

– Here: parameterize requirements, check consistency

of parameterized models vis a vis parameterized

requirements

• Parameter interactions

• Requirements are not the always what’s required

35

© 2012 University of Maryland and Fraunhofer USA

Thank You!

Rance Cleaveland

University of Maryland / Fraunhofer USA CESE

rance@cs.umd.edu

+1 301-405-8572

36

