
Ezio Bartocci

Toward Real-Time Simulation
of Cardiac Dynamics

Joint work with
E. Cherry, J. Glimm, R. Grosu, S. A. Smolka, F. Fenton

SUNY Stony Brook

Outline

•  Motivation
•  Cardiac Models as Reaction Diffusion Systems
•  CUDA Programming Model
•  Reaction Diffusion in CUDA
•  Case Studies
•  Work in Progress

Motivation for our Work

•  Spiral Formation
•  Spiral Breakup
•  Tip Tracking
•  Front Wave Tracking
•  Curvature Analysis
•  Conduction Velocity
•  Restitution Analysis

Simulation-Based Analysis
•  Spiral Formation
•  Spiral Breakup
•  Tip Tracking
•  Front Wave Tracking
•  Curvature Analysis
•  Conduction Velocity
•  Restitution Analysis

•  Spiral Formation
•  Spiral Breakup
•  Tip Tracking
•  Front Wave Tracking
•  Curvature Analysis
•  Conduction Velocity
•  Restitution Analysis

•  Spiral Formation
•  Spiral Breakup
•  Tip Tracking
•  Front Wave Tracking
•  Curvature Analysis
•  Conduction Velocity
•  Restitution Analysis

•  Spiral Formation
•  Spiral Breakup
•  Tip Tracking
•  Front Wave Tracking
•  Curvature Analysis
•  Conduction Velocity
•  Restitution Analysis

Cardiac Models as Reaction Diffusion Systems

Membrane’s AP depends on:
•  Stimulus (voltage or current):

–  External / Neighboring cells

•  Cell’s state

time
vo

lta
ge

St

im
ul

us

failed initiation

Threshold

Resting potential

Schematic Action Potential

AP has nonlinear behavior!
•  Reaction diffusion system:

∂u
∂t

= R(u) +∇(D∇u)

Behavior
In time

Reaction Diffusion

Cardiac Models

•  Minimal Model (Flavio-Cherry) (4 v) Human
•  Beeler-Reuter (8 v) Canine
•  Ten Tussher Panfilov (19 v) Human
•  Iyer (67 v) Human

Available Technologies

CPU based GPU based

The GPU devotes more transistors to data processing

This image is from CUDA programming guide

GPU vs CPU

GPU Architecture

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

Each GPU consists of a
Set of multiprocessors.

MULTIPROCESSORS

GPU Architecture

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

Each Multiprocesssor
can have 8/32 Stream
Processors (SP) (called
by NVIDIA also cores)
which share access to
local memory.

MULTIPROCESSORS

GPU Architecture

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

MULTIPROCESSORS
Each Stream Processor
(core) contains a fused
multiply-adder capable
of single precision
arithmetic. It is capable
of completing 3 floating
point operations per
cycle - a fused MADD
and a MUL.

GPU Architecture

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

MULTIPROCESSORS

Each multiprocessor can
contain one or more 64-
bit fused multiple adder
for double precision
operations.

Memory Hierarchy

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

The fastest available
Memory for GPU
computation is device
registers. Each
multiprocessor contains
16KB of registers.
The registers are
partitioned among the
 MP-resident threads

MULTIPROCESSORS

…

Memory Hierarchy

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

MULTIPROCESSORS

…
Shared memory (16KB) is
primarily intended
as a means to provide
fast communication
between threads of the
executed by the same
multiprocessor, although,
due to its speed, it can
also be used as a
programmer controlled
memory cache.

Memory Hierarchy

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

MULTIPROCESSORS

…

GPUs have also DRAM
The latency is 150x is slower
then registers and
shared memory

Memory Hierarchy

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

MULTIPROCESSORS

…

Constant memory, as the
name implies, is a
read-only region which
also has a small cache.

Memory Hierarchy

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

MULTIPROCESSORS

…

Texture memory is read-only
with a small cache optimized
for manipulation of textures.
It also provides built-in linear
interpolation of the data.
also provides built-in linear
interpolation of the data.

Memory Hierarchy

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

SP SP

SP SP

SP SP

SP SP

Registers

Shared Memory

Global Memory

Texture Cache

Constant Cache

MULTIPROCESSORS

…

Global memory is available
to all threads and is persistent
between GPU calls.

CUDA Programming Model
CPU Host

Serial Code i

Serial Code j

Kernel
Invocation

GPU Device

Block (0,0) Block (0,1)

Block (1,0) Block (1,1)

Block (2,0) Block (2,1)

Block (3,0) Block (3,1)

Block (4,0) Block (4,1)

Block (5,0) Block (5,1)

Grid k
A[ID]=ID

Single Instruction Multiple Threads (SIMT)
 similar to
Single Instruction Multiple Data (SIMD)

THREAD ID 0 THREAD ID 1 THREAD ID 2 THREAD ID 3

A[ID]=ID A[ID]=ID A[ID]=ID

if (ID%2) if (ID%2) if (ID%2) if (ID%2)

A vector

 A[ID]+=2; A[ID]+=2; A[ID]+=2; A[ID]+=2;
 A[ID]*=2; A[ID]*=2; A[ID]*=2; A[ID]*=2;
else else else else
 A[ID]=0; A[ID]=0; A[ID]=0; A[ID]=0;
endif endif endif endif
A[ID]+=2; A[ID]+=2; A[ID]+=2; A[ID]+=2;

0 1 2 3 2 0 4 0 4 0 8 0

When branches occur in the code (e.g. due to if statements) the divergent
threads will become inactive until the conforming threads complete their
separate execution.

6 2 10 2

When execution merges, the threads can
continue to operate in parallel.

0 1 2 3 4 0 8 0

CUDA Programming Model

Global Memory

GPU DEVICE

GRID BLOCK

THREAD BLOCK

SHARED MEMORY

REGISTERS

The max number of threads
for a thread block is 512
and it depends on the
amount of registers
that each thread may need.

Each Thread block is executed
by a multiprocessors

Different threads are multiplexed
and executed by the same core
in order to reduce the latency of
memory access.

Tesla C1060 Fermi C2070

30 Multiprocessors
240 Cores
Processor core clock: 1.296 GHz
933 Gigaflops (Single precision)
78 Gigaflops (Double Precision)
Max Bandwidth(102 Gigabytes/sec)
4 GB of DRAM

14 Multiprocessors
448 Cores
Processor core clock: 1.15 GHz
1030 Gigaflops (Single precision)
515 Gigaflops (Double precision)
Max Bandwidth (144 GBytes/sec)
6 GB of DRAM

Cost: 1000 $ Cost: 3200 $

Reaction-Diffusion in CUDA
∂u
∂t

= R(u) +∇(D∇u) For each time step, a set of (ODEs) and Partial
Differential Equations (PDEs) must be solved.

for (timestep=1; timestep < nend; i++){
 solveODEs <<grid, block>> (….);
 calcLaplacian <<grid, block>> (….);
}

Solving ODEs using different method
depending on the model:

-Runge-Kutta 4th order
-Forward Euclid
-Backward Euclid
-Semi-Implicit
……

Solving PDEs (Calc the Laplacian)

∇(D∇u)i, j =
Ddt
dx2

ui−1, j + ui, j−1 + ui+1, j + ui, j+1 − 4ui, j()

Optimize the Reaction Term in CUDA
Heaviside Simplification

•  In order to avoid divergent branches among threads we
substitute if then else condition of Heaviside functions
in this way:

Precomputing Lookup Tables using Texture
•  We build tables where we precompute nonlinear part of

the ODEs, we bind these table to textures and we
exploit the built-in linear interpolation feature of the
texture.

If (x > a){
 y = b;
}else{
 y = c;
}

y =b + (x > a)*(b_c)

a, b, b_c (b-c) are constant

Optimize the Reaction Term in CUDA
Kernel splitting:

•  For complex models, we need to split the ODEs solving
in many Kernels in order to have enough registers for
thread to perform our calculation.

Use –use_fast_math compiler option to substitute
•  In the models that use log, exp, sqrt, functions we

substitute them with the GPU built-in functions.

Using Costant memory for common parameters (dt, dx, ..)

Optimize the Diffusion Term in CUDA
Solving PDEs (Calc the Laplacian)

∇(D∇u)i, j =
Ddt
dx2

ui−1, j + ui, j−1 + ui+1, j + ui, j+1 − 4ui, j()

Each location is a float
(4 bytes) The global
memory latency is
very slow. The memory is
accessed in multiples of
64 bytes

Using texture we can reduce the latency
In texture the data is cached (optimize for 2D Locality)
Drawback: It supports only single precision

Optimize the Diffusion Term in CUDA

∇(D∇u)i, j =
Ddt
dx2

ui−1, j + ui, j−1 + ui+1, j + ui, j+1 − 4ui, j()

Drawback: The number of threads is greater than the number of elements

Another Technique is using SHARED MEMORY

THREAD BLOCK

SHARED MEMORY

REGISTERS

Step 1 Step 2 Step 3

The yellow and red threads read
the location from the global memory
into the shared memory.

The red threads calculates the
laplacian using the values
in the shared memory.

This technique supports single and double precision

SYNCH

Case Study 1: Minimal Model (4V)

Perfomances

CPU Computation GPU Computation

Naïve Implementation

5.4 x

512x512 2048x2048

82.92 x

Reaction optimized
(Diffusion with Shared Memory)

520x520 2074x2074

1.95 x

27.71 x

Reaction optimized
(Diffusion with Texture)

512x512

1.7x

2048x2048

22.46x

Beeler-Reuter Model (8V)

2074x2074 520x520

Reaction optimized
(Diffusion with Shared Memory)

12.87x

165.46x

Reaction optimized
(Diffusion with Texture)

11.34x

125.62x

Ten Tusscher Panfilov Model (19V)

Reaction optimized
(Diffusion with Shared Memory)

520x520 2074x2074

47x

815x

Reaction optimized
(Diffusion with Texture)

2048x2048

36x

515x

512x512

Double vs Single

After 10 minutes
of simulation:

Nai

Double vs Single

After 10 minutes
of simulation:

Ki

Double vs Single
After 10 minutes of simulation:

Work in Progress Iyer Model (67V)

Work in Progress 3D Models

Conclusions

•  Many other challenge problems of CMACS expedition
can take advantage of GPU technologies.

•  The curve of developing of these technologies seems
very promising for the future years.

•  We are definitely interesting to collaborate with the
other teams of the CMACS expedition in order to
develop new revolutionary highly scalable GPU-based
analysis tools for complex systems.

Thank you

