# Towards Curvature-Based Prediction of Spiral Breakup in Cardiac Tissue

### Abhishek Murthy

Stony Brook University (SBU)

amurthy@cs.sunysb.edu

Joint Work with Ezio Bartocci, Prof. Radu Grosu and Prof. Scott Smolka

April 28, 2011







Wave Breaks and Atrial Fibrillation

## Introduction





## Introduction



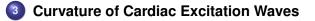
Ourvature of Cardiac Excitation Waves

## Case Studies

## Introduction



Wave Breaks and Atrial Fibrillation



## Case Studies

## 5 Future Work

- Atrial Fibrillation (AF) the quivering of heart muscles of atrial chambers, is the most common cardiac arrhythmia.
- Prevalent in 2.66 Million Americans, AF responsible for 14,490 deaths in 2010.
- As an independent risk factor for ischemic strokes, responsible for at least 15% to 20% cases.

#### **Cardiac Excitation Waves**

- Modelling electrical excitation of cardiac tissue as a reaction-diffusion system - Minimal Model
- Simulating model under Isotropic Diffusion (ID)



Figure: One time step of simulating cardiac electrical conduction under ID

#### Wave Breaks and AF

- Spatio-temporal description of the fibrillating cardiac tissue involves wave breaks or phase singularities.
- Curved waves break up near regions of high curvature.

(Loading breakupExample.avi)

#### Wave Breaks and AF

- Spatio-temporal description of the fibrillating cardiac tissue involves wave breaks or phase singularities.
- Curved waves break up near regions of high curvature.

(Loading breakupExample.avi)

Predicting wave break-ups will help predict the onset of AF.

• Wave propagation speed and curvature are related.

- Wave propagation speed and curvature are related.
- If V is propagation speed and K, the curvature, then

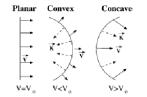
$$V(K) = V_0 - DK$$

 $V_0$  = speed of a planar wave D = diffusion co-efficient

- Wave propagation speed and curvature are related.
- If V is propagation speed and K, the curvature, then

$$V(K) = V_0 - DK$$

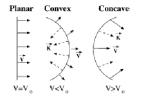
 $V_0$  = speed of a planar wave D = diffusion co-efficient



- Wave propagation speed and curvature are related.
- If V is propagation speed and K, the curvature, then

```
V(K) = V_0 - DK
```

 $V_0$  = speed of a planar wave D = diffusion co-efficient



• Curved waves break near regions of high curvature - wave propagation velocity decreases with increasing convexity. Thus wave breaks up at critical curvature  $K_{cr} = V_0/D$ 

#### **Curvature of Cardiac Excitation Waves**

Requirements for estimating and analysing the curvature of excitation waves (for prediction purposes):

- Curvature estimation must be accurate.
- Curvature should be estimated continuously along the length of the wave.

#### **Curvature of Cardiac Excitation Waves**

Requirements for estimating and analysing the curvature of excitation waves (for prediction purposes):

- Curvature estimation must be accurate.
- Curvature should be estimated continuously along the length of the wave.

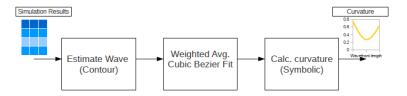


Figure: Curvature Estimation of Cardiac Excitation Waves

 Given a simulation of a grid G of m × n cells, wave W(c, t) can be written as

$$W(c,t) = \{(x,y) | x, y \in \mathbb{R} \ F(x,y) = c \ at \ time \ t\}$$

Where F(x, y) = interpolation of the simulation results onto  $\mathbb{R}^2$ 

 Given a simulation of a grid G of m × n cells, wave W(c, t) can be written as

$$W(c,t) = \{(x,y) | x, y \in \mathbb{R} \ F(x,y) = c \ at \ time \ t\}$$

Where F(x, y) = interpolation of the simulation results onto  $\mathbb{R}^2$ 

• Check for intersection of wave and an edge of the grid.

 Given a simulation of a grid G of m × n cells, wave W(c, t) can be written as

$$W(c, t) = \{(x, y) | x, y \in \mathbb{R} | F(x, y) = c \text{ at time } t\}$$

Where F(x, y) = interpolation of the simulation results onto  $\mathbb{R}^2$ 

- Check for intersection of wave and an edge of the grid.
- Intersection point is obtained by linear interpolation. Implemented using *contour* function of Matlab

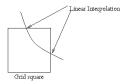


Figure: Contour estimation on grid

 Given a simulation of a grid G of m × n cells, wave W(c, t) can be written as

$$W(c, t) = \{(x, y) | x, y \in \mathbb{R} \ F(x, y) = c \ at \ time \ t\}$$

Where F(x, y) = interpolation of the simulation results onto  $\mathbb{R}^2$ 

- Check for intersection of wave and an edge of the grid.
- Intersection point is obtained by linear interpolation. Implemented using *contour* function of Matlab

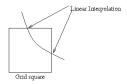


Figure: Contour estimation on grid

• Track the same wave across different time steps of the simulation.

#### **Curvature - Cubic Bézier Fits of Waves**

 Obtain C2 continuous Bézier fit that can be used for symbolic curvature estimation.

#### **Curvature - Cubic Bézier Fits of Waves**

- Obtain C2 continuous Bézier fit that can be used for symbolic curvature estimation.
- Fit each of the overlapping strip with cubic Bézier curves of the form:

$$\begin{aligned} X_{j}(t) &= (1-t)^{3} P_{j}^{0} + 3t(1-t)^{2} P_{j}^{1} + 3t^{2}(1-t) P_{j}^{2} + t^{3} P_{j}^{3}. \ t \in [0,1] \ (1) \\ Y_{j}(t) &= (1-t)^{3} Q_{j}^{0} + 3t(1-t)^{2} Q_{j}^{1} + 3t^{2}(1-t) Q_{j}^{2} + t^{3} Q_{j}^{3}. \ t \in [0,1] \ (2) \\ \text{where } j \text{ is the strip index.} \end{aligned}$$

#### **Curvature - Cubic Bézier Fits of Waves**

- Obtain C2 continuous Bézier fit that can be used for symbolic curvature estimation.
- Fit each of the overlapping strip with cubic Bézier curves of the form:

$$\begin{aligned} X_{j}(t) &= (1-t)^{3} P_{j}^{0} + 3t(1-t)^{2} P_{j}^{1} + 3t^{2}(1-t) P_{j}^{2} + t^{3} P_{j}^{3}. \ t \in [0,1] \ (1) \\ Y_{j}(t) &= (1-t)^{3} Q_{j}^{0} + 3t(1-t)^{2} Q_{j}^{1} + 3t^{2}(1-t) Q_{j}^{2} + t^{3} Q_{j}^{3}. \ t \in [0,1] \ (2) \\ \text{where } j \text{ is the strip index.} \end{aligned}$$

• In the region of overlap take weighted average of the two curves.

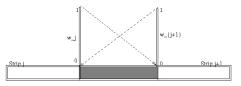


Figure: Weighted average based Bézier curve fitting

#### **Curvature - Symbolic Curvature Estimation**

 Closed form expressions corresponding to C2 smooth Bézier fit can be processed symbolically in MATLAB's symbolic computation toolbox.

#### **Curvature - Symbolic Curvature Estimation**

- Closed form expressions corresponding to C2 smooth Bézier fit can be processed symbolically in MATLAB's symbolic computation toolbox.
- If  $X_j(t)$  and  $Y_j(t)$  denote the fit for a strip, then curvature is calculated as

$$\kappa_j(t) = \frac{|r'_j(t) \times r''_j(t)|}{|r'_j(t)|^3}$$
(3)

where  $r_j(t) = [X_j(t), Y_j(t)]$  is the position vector described by the Bézier curve.

#### **Curvature - Symbolic Curvature Estimation**

- Closed form expressions corresponding to C2 smooth Bézier fit can be processed symbolically in MATLAB's symbolic computation toolbox.
- If  $X_j(t)$  and  $Y_j(t)$  denote the fit for a strip, then curvature is calculated as

$$\kappa_j(t) = \frac{|r'_j(t) \times r''_j(t)|}{|r'_j(t)|^3}$$
(3)

where  $r_j(t) = [X_j(t), Y_j(t)]$  is the position vector described by the Bézier curve.

 Continuous closed form of κ<sub>j</sub>(t) => continuous curvature estimate along wavefront

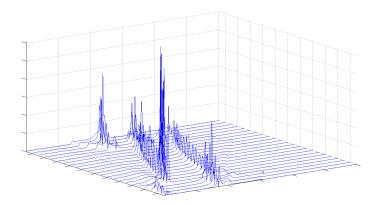
(Loading circularCoreCurvatureExample.avi)

- Linear core generated with Minimal Model (1024x1024)
- Spiral Breakup generated with Beeler Reauter Model(1024x1024)

#### **Linear Core**

(Loading linearCoreCurvature.avi)

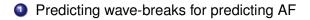
#### **Linear Core - Curvature Trend**



#### Figure: Curvature trend for linear core till first turn

(Loading brkupCurvature.avi)

- Collect training data by simulating different wave break scenarios.
- Learn patterns of wave break-ups based up morphological features.
- Predict the temporal behaviour using the patterns learnt.



- Predicting wave-breaks for predicting AF
- Curvature and spatio-temporal behaviour of cardiac waves are related

- Predicting wave-breaks for predicting AF
- Curvature and spatio-temporal behaviour of cardiac waves are related
- Requirements for curvature estimation

- Predicting wave-breaks for predicting AF
- Ourvature and spatio-temporal behaviour of cardiac waves are related
- Requirements for curvature estimation
- Weighted average based fitting with cubic Bézier curves

- Predicting wave-breaks for predicting AF
- Ourvature and spatio-temporal behaviour of cardiac waves are related
- Requirements for curvature estimation
- Weighted average based fitting with cubic Bézier curves
- Symbolic curvature calculation

- Predicting wave-breaks for predicting AF
- Ourvature and spatio-temporal behaviour of cardiac waves are related
- Requirements for curvature estimation
- Weighted average based fitting with cubic Bézier curves
- Symbolic curvature calculation
- Case studies show potential of using curvature to analyse cardiac waves.

#### References

- "Heart Disease and Stroke Statistics 2011 update: A Report from the American Heart Association", Véronique L. Roger et. al. Circulation Journal of the American Heart Association.
- Measuring Curvature and Velocity Vector Fields for Waves of Cardiac Excitation in 2-D Media", Matthew W. Kay and Richard A. Gray, IEEE Transactions on Biomedical Engineering 2005.
- \*Role of Wavefront Curvature in Propagation of Cardiac Impulse, Vladmir G. Fast and André G. Kléber, Cardiovascular Research 1997.
- The Fibrillating Atrial Myocardium. What can the Detection of Wave Breaks Tell Us?", André G. Kléber, Cardiovascular Research 2000.

Consider an edge *e* on the grid *G* whose end points are  $(x_{g1}, y_{g1})$  and  $(x_{g2}, y_{g2})$  and the excitation levels at the two end points are  $c_1$  and  $c_2$ . The wavefront crosses this edge if  $c_1 \le c \le c_2$ .

Let (x, y) be the point at which the wavefront intersects this edge. x and y can be calculated using linear interpolation as follows:

$$x = x_{g1} + \frac{c - c_1}{c_2 - c_1} (x_{g2} - x_{g1})$$
$$y = y_{g1} + \frac{c - c_1}{c_2 - c_1} (y_{g2} - y_{g1})$$

Running time for n x n grid =  $O(n^2)$ 

#### **Details - Bezier Curve fitting**

Bezier curve:

$$X_{j}(t) = (1-t)^{3}P_{j}^{0} + 3t(1-t)^{2}P_{j}^{1} + 3t^{2}(1-t)P_{j}^{2} + t^{3}P_{j}^{3}. t \in [0,1]$$
(4)  

$$Y_{j}(t) = (1-t)^{3}Q_{j}^{0} + 3t(1-t)^{2}Q_{j}^{1} + 3t^{2}(1-t)Q_{j}^{2} + t^{3}Q_{j}^{3}. t \in [0,1]$$
(5)  
Error functions

$$E_x = \sum_{i=1}^{SL} [x_i - X_j(t_i)]^2$$
(6)  
$$E_y = \sum_{i=1}^{SL} [y_i - Y_j(t_i)]^2$$
(7)

which give

$$E_x = \sum_{i=1}^{SL} [x_i - (1 - t_i)^3 P_j^0 + 3t_i(1 - t_i)^2 P_j^1 + 3t_i^2(1 - t_i) P_j^2 + t_i^3 P_j^3]^2$$
$$E_y = \sum_{i=1}^{SL} [y_i - (1 - t_i)^3 Q_j^0 + 3t_i(1 - t_i)^2 Q_j^1 + 3t_i^2(1 - t_i) Q_j^2 + t_i^3 Q_j^3]^2$$

Abhishek Murthy (SBU)

Towards Curvature based Breakup Prediction

#### **Details - Bezier Curve fitting**

 $P_i^1$  and  $P_i^2$  can be obtained at the minimum value of  $E_x$  by

$$\frac{\partial E_x}{\partial P_j^1} = 0$$
$$\frac{\partial E_x}{\partial P_j^2} = 0$$

Solving the above two equations we obtain the following expressions for  $P_i^1$  and  $P_i^2$ :

$$P_{j}^{1} = \frac{\alpha_{2}^{j}\beta_{1}^{j} - \alpha_{3}^{j}\beta_{2}^{j}}{\alpha_{1}^{j}\alpha_{2}^{j} - \alpha_{3}^{j^{2}}}$$
(8)  
$$P_{j}^{2} = \frac{\alpha_{1}^{j}\beta_{2}^{j} - \alpha_{3}^{j}\beta_{1}^{j}}{\alpha_{1}^{j}\alpha_{2}^{j} - \alpha_{3}^{2}^{j}}$$
(9)

Towards Curvature based Breakup Prediction

#### **Details - Bezier Curve fitting**

where  $\alpha_1, \alpha_2, \alpha_3, \beta_1$  and  $\beta_2$  for each segment are given by:

$$\alpha_{1} = 9 \sum_{i=1}^{SL} [t_{i}^{2} (1 - t_{i})^{4}]$$

$$\alpha_{2} = 9 \sum_{i=1}^{SL} [t_{i}^{4} (1 - t_{i})^{2}]$$

$$\alpha_{3} = 9 \sum_{i=1}^{SL} [t_{i}^{3} (1 - t_{i})^{3}]$$

$$\beta_{1} = 3 \sum_{i=1}^{SL} [t_{i} (x_{i} - (1 - t_{i})^{3} P_{0} - t_{i}^{3} P_{3})(1 - t_{i})^{2}]$$

$$\beta_{2} = 3 \sum_{i=1}^{SL} [t_{i}^{2} (x_{i} - (1 - t_{i})^{3} P_{0} - t_{i}^{3} P_{3})(1 - t_{i})]$$