

Workshops on Computational Modeling of Complex Systems

Flavio Fenton and Nancy Griffeth March 28, 2011

CMACS Workshop Objectives

- Disseminate project work among promising students
- Encourage enthusiasm for research and modeling complex systems
- Find good prospects for REU and graduate programs
- Encourage under-represented minorities to enter STEM fields
- Encourage inter-disciplinary work
- Develop course materials

- Recruiting and Admission: Nancy
- 2011 Workshop on Atrial Fibrillation
 - Week 1: Flavio
 - Weeks 2-3 and Evaluation: Nancy
- Student Results and Paper: Flavio
- 2012 Workshop on Cellular Signaling Pathways

2011 Workshop: Recruiting and Admission

- Target Colleges: Lehman, Hunter, Brooklyn, Queens, CCNY
- Applicants:

	2010	2011		
	Applied Adr	nitted Ap	plied Adr	nitted
Brooklyn	5	4	4	2
Hunter	8	4	6	6
Lehman	11	6	6	4
Queens	0	0	4	3
Stony Brook	1	1		
Total	25	15	20	15

MACS 2011 Workshop: Student Characteristics

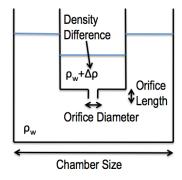
Ethnicity	Number	Major	Number
African- American	3	Math	6
Woman	5	Bio	4
Hispanic	3	CS	7

Workshop Attendees

CMACS Workshop Outline

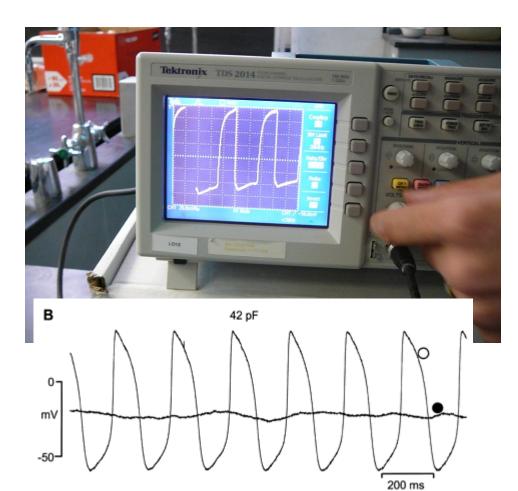
- Biology background: Week 1 (Flavio Fenton, Rupinder Singh)
- Mathematical and Programming background: Week 2
- Student Project: Week 3

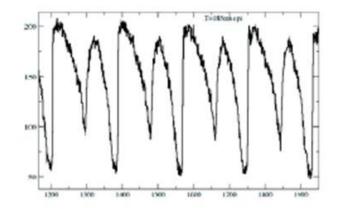
- Mathematical preliminaries
 - Modeling exercise and differential equations – Terri Grosso
 - Numerical Integration Kai Zhao
 - Introduction to CUDA Joshua Rogers
 - The 4V Model and Code Ezio Bartocci

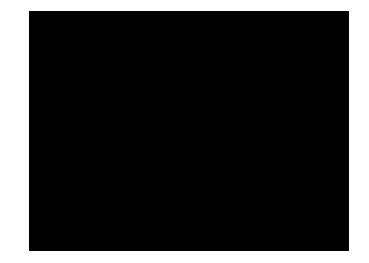

- Students worked in 5 groups (same as week 2)
- Flavio assigned parameters to each group
- Using Ezio's code on various CUDA machines^{*}, students generated data
- Flavio reviewed the work via Skype

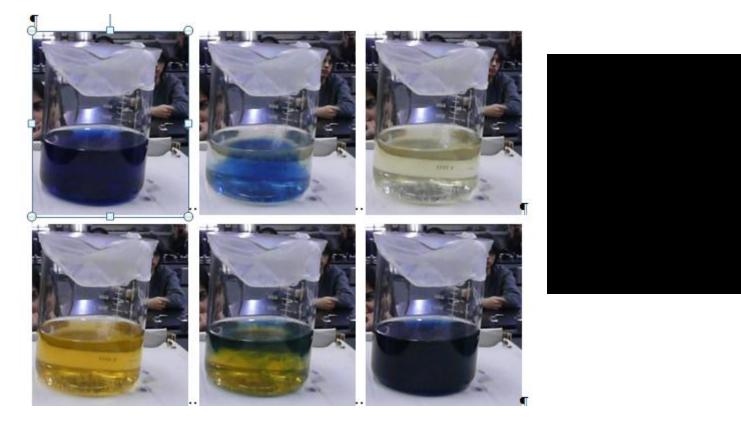
*Thanks to Brian Murphy and NVIDIA

CMACS Week 1


- Complex Systems and Biological Background
 - CMACS and its goals
 - Chaos and complex systems
 - Experimental exercises with oscillators
 - Relation between oscillators and cardiac cells
 - Mathematical modeling of cardiac cells
 - Cardiac arrhythmias and its study by computer simulations

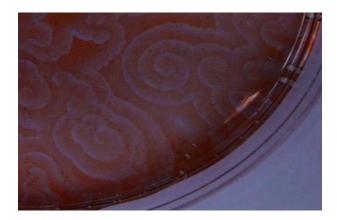




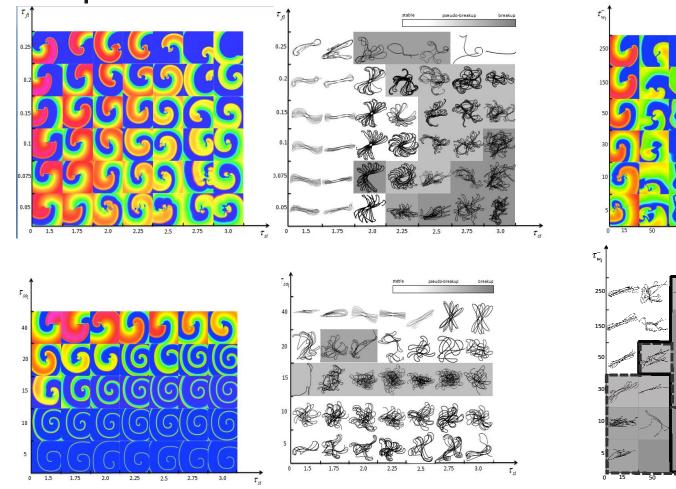


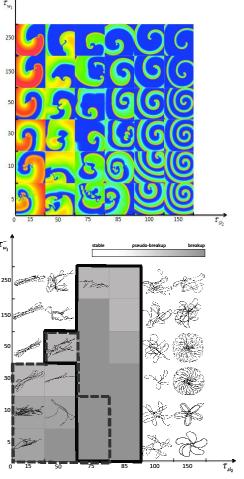
Chemical Oscillators

Briggs-Rauscher and Belousov-Zhabotinsky


Chemical Oscillators

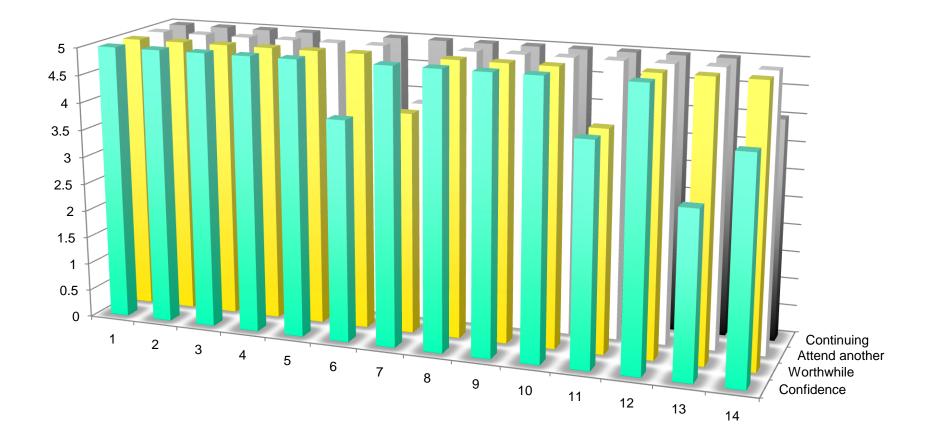
Briggs-Rauscher and Belousov-Zhabotinsky



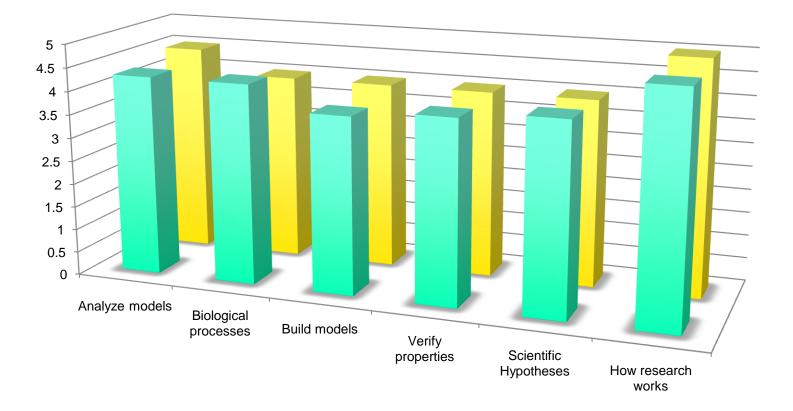


CMACS Students Results

CMACS Students Results


Advances in Physiology Education

Teaching cardiac electrophysiology modeling to undergraduate students: Lab exercises and GPU programming for the study of arrhythmias and spiral wave dynamics


Ezio Bartocci¹, Rupinder Singh², Frederick B. von Stein³, Avessie Amedome⁴, Alan Joseph J. Caceres⁴, Juan Castillo⁴, Evan Closser⁴, Gabriel Deards⁴, Andriy Goltsev⁴, Roumwelle Sta. Ines⁴, Cem Isbilir⁴, Joan K. Marc⁴, Diquan Moore⁴, Dana Pardi⁴, Sandeep Sadhu⁴, Samuel Sanchez⁴, Pooja Sharma⁴, Anoopa Singh⁴, Joshua Rogers⁴, Aron Wolinetz⁴, Terri Grosso-Applewhite⁴, Kai Zhao⁴, Andrew B. Filipski⁵, Robert F. Gilmour Jr³, Radu Grosu⁵, James Glimm¹, Scott A Smolka⁵, Elizabeth M. Cherry^{3,7}, Edmund M. Clarke⁸, Nancy Griffeth⁴, Flavio H. Fenton³

¹Department of Applied Mathematics and Statistics, Stony Brook University, NY. ²Department of Biomedical Engineering, Cornell University, Ithaca, NY. ³Department of Biomedical Sciences, Cornell University, NY. ⁴The City University of New York. ⁵Department of Software Engineering, Rochester Institute of Technology, NY. ⁶Department of Computer Science, Stony Brook University, NY. ⁷Department of Applied Mathematics, Rochester Institute of Technology, NY. ⁸Computer Science Department, Carnegie Mellon University, PA

General Objectives

Student Evaluations – Specific Learning Objectives

Macs Best things about workshop...

- Learning experience
 - A ground-up exposure to the process of formulating a model
 - Running the Simulations of the Spiral waves on the cuda GPU
 - Learning how heart fibrillation works
 - Learning about the resources and technology ... necessary for ... research
 - Applications of parallel computation to simulate the human heart

Collaboration

- The opportunity to collaborate with other peers in different disciplines.
- Seeing how every area of science (Biology, Math) work together to solve the real world problems from very distinguished professors

Future plans

- This workshop inspired me to pursue information outside of my own discipline.
- Getting a sense that I am capable of doing similar research

MACS Suggested improvements

- More of the biological background relevant to our models. I really enjoyed Robert Gilmore's presentation ... it would have been more helpful to begin with [it].
- [Topics], whether biology, math, or programming, [were] first presented in a complex manner and then more simply.
- More time to working on projects and presentations
- I would do the Math first.
- [More on] how to construct a basic differential equation that describes some simple behavior
- Week one: general introductions of the concept to students of all majors.

Week two: separate students by majors and provide more intense learning in the field related to each group Week three: final project

CMACS Planned 2012 Workshop

Challenge problem: Pancreatic Cancer

Collaborators: Jim Faeder, Ed Clarke,