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HMGB1 and Pancreatic Cancer Model 

 The first complete computational model of HMGB1 signal 

transduction in tumorigenesis.

 Crosstalk of p53, RAS, NFkB & RB signaling pathways. 

 More details in “Analysis and Verification of the HMGB1 

Signaling Pathway”. BMC Bioinformatics 11 (Suppl 7)

(2010); 

 Best Paper Award at the International Conference on 

Bioinformatics, Tokyo, Japan (2010).

 “Computational Modeling and Verification of Signaling 

Pathways in Cancer”. In Algebraic and Numeric Biology 

(2010).07/16/0907/16/0907/16/0907/16/0907/16/09



HMGB1 and Pancreatic Cancer 

(Lotze et al., UPMC)

Experiments with pancreatic cancer cells:

 Overexpression of HMGB1/RAGE is associated with diminished 

apoptosis, and longer cancer cell survival time.

 Knockout of HMGB1/RAGE leads to increased apoptosis, and 

decreased cancer cell survival.

HMGB1 RAGE Apoptosis

• High-Mobility Group Protein 1 (HMGB1):

• DNA-binding protein and regulates gene transcription

• released from damaged or stressed cells, etc.
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begin molecule types

A(b,Y~U~P) # A has a component Y which   

# can be labeled as U (unphosphorylated) 
# or P (phosphorylated)

B(a)

end molecule types

begin reaction rules

A(b)+ B(a)<-> A(b!1).B(a!1)

A(Y~U) -> A(Y~P)

end reaction rules

Ordinary Differential Equations and Stochastic 

simulation (Gillespie’s algorithm)

Faeder JR, Blinov ML, Hlavacek WS Rule-Based Modeling of Biochemical Systems 

with BioNetGen.  In Methods in Molecular Biology: Systems Biology, (2009).
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The BioNetGen Language



BioNetGen

 Two Events: PIP3 phosphorylates AKT, and AKT dephosphorylates.

begin species begin parameters

AKT(d~U) 1e5      k 1.2e-7

AKT(d~p) 0 d 1.2e-2

end species end parameters

begin reaction_rules          (Note: PIP(c~p) = PIP3)

PIP(c~p) + AKT(d~U) → PIP(c~p) + AKT(d~p) k

AKT(d~p) → AKT(d~U) d

end reaction_rules

 The corresponding ODE is:

= k∙[PIP(c~p)](t)∙[AKT(d~U)](t) – d∙[AKT(d~p)](t)
dt

tpdd ))](~(AKT[



Simulations (I)

 Baseline simulation of p53, MDM2, Cyclin D/E in response to 

HMGB1 release: ODE vs stochastic simulation



Simulations (II)

 Overexpression 

of HMGB1 

leads to increase 

of E2F and 

Cyclin D/E, 

decrease of p53. 

 Overexpression 

of AKT 

represses p53 

level



 Bounded Linear Temporal Logic (BLTL): Extension 

of LTL with time bounds on temporal operators.

 Ft a – “a will be true in the Future within time t ”

 Gt a – “a will be Globally true between time 0 and t ”

 Example: “does the number of AKTp molecules 

reaches 4,000 within 20 minutes” 

F20 (AKTp ≥ 4,000)

Bounded Linear Temporal Logic



Verification of BioNetGen Models

 Given a stochastic BioNetGen model     , Temporal property 

Ф, and a fixed 0<θ<1, we ask whether  P≥θ (Ф) or P<θ (Ф).

 For example: “could AKTp reach 4,000 within 20 minutes, 

with probability at least 0.99?” : P≥0.99 (F20 (AKTp ≥ 4,000))

 Does      satisfy     with probability at least   ?

 Draw a sample of system simulations and use Statistical 

Hypothesis Testing: Null vs. Alternative hypothesis



Verification (I)

 Overexpression of HMGB1 will induce the expression 

of cell regulatory protein CyclinE.

 We model checked the formula with different initial 

values of HMGB1, the probability error is 0.001.

P≥0.9 F600 ( CyclinE > 900 )

HMGB1 # samples # Success Result

102 9 0 False

103 55 16 False

106 22 22 True



Verification (II)

 P53 is expressed at low levels in normal human cells.

 P≥0.9 Ft ( G900 ( p53 < 3.3 x 104 ) )

t(min) # Samples # Success Result Time (s)

400 53 49 True 597.59

500 23 22 True 271.76

600 22 22 True 263.79



Verification (III)

 Coding oscillations of NFkB in temporal logic

 R is the fraction of NFkB molecules in the nucleus

P≥0.9 Ft (R ≥ 0.65 & Ft (R < 0.2 & Ft (R ≥ 0.2 & Ft (R <0.2))))

HMGB1 t (min) # Samples # Success Result Time (s)

102 45 13 1 False 76.77

102 60 22 22 True 111.76

102 75 104 98 True 728.65

105 30 4 0 False 5.76



Contribution I

 First computational model for investigating HMGB1 and 

tumorigenesis; it agrees well with HMGB1 experiments.

 Our model suggests a dose-dependent p53, CyclinD/E, 

NFkB response curve to increasing HMGB1 stimulus:

 this could be tested by future experiments

 The model can provide a guideline for cancer 

researchers to design new in vitro experiments

 Statistical Model Checking automatically validates our 

model with respect to known experimental results.



Part II: Symbolic Model Checking of 

Pancreatic Cancer Models

1. Boolean Network Model

2. Applications of Symbolic Model Checking

I. HMGB1 Model 

II. Diabetes-Cancer Model

III. Frequently Mutated Pathways Model

3. Contribution II
07/16/0907/16/0907/16/0907/16/0907/16/09



Boolean Network Model

1. Boolean network: a graph, a Boolean transfer function

2. The state of each node is either ON(1) or OFF(0).

3. The Boolean transfer function describes the transformation 

of the state of a node from time t  to  t + 1.

4. Nodes are classified as activators or inhibitors. 

5. Activators can change the state of a node n if and only if no 

inhibitor acting on node n is in the ON state. 
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Diabetes and Pancreatic Cancer

• Diabetes: two major subtypes, Type 1, and Type 2 (over 

90% of the diabetes population)

• Type 2 diabetes is characterized by

• hyperglycemia, 

• hyper-insulinaemia caused by insulin resistance or treatment

• activation of the WNT pathway.

• In Type 2 diabetes patients the risk for pancreatic, 

colon, and breast cancer grows by 50%, 30%, and 20%.



Diabetes-Cancer Model

249

possible 

states



Question 1 and Answer

• Question 1: Do diabetes risk factors influence the risk of cancer 

or cancer prognosis?

Property 1 : AF(Proliferate);      Property 1’ : EF(Proliferate);

Property 2 : AF(Apoptosis);        Property 2’ : EF(Apoptosis);

Property 3 : AF(Resistance);      Property 3’ : EF(Resistance);

• Normal Cell: Properties 3 and 2’-3’ are true. Diabetes risk factors can 

augment insulin resistance, but cell growth is still regulated by the tumor 

suppressor proteins. Cancer risk might not increase.

• Precancerous/cancerous cells (INK4a, ARF =0): all but Property 2 

are true. Diabetes risk factors promote growth in precancerous or 

cancerous cells and augment insulin resistance.



Question 2 and Answer

• Question 2: Which signaling components are common and critical 

to both diabetes and cancer? That is, which proteins’ mutation/ 

knockout will promote/inhibit both cancer cell growth and insulin 

resistance in diabetic cancer patients?

AG{RAS AF(Resistance & Proliferate & !Apoptosis)}

AG{AKT AF(Resistance & Proliferate & !Apoptosis)}

AG{NFkB AF(Resistance & Proliferate & !Apoptosis)}

AG{ROS AF(Resistance & Proliferate & !Apoptosis)}

See “Model Checking of a Diabetes-Cancer Model”, accepted at the 3rd

International Symposium on Computational Models for Life Sciences, 2011



Contribution II

 “Symbolic Model Checking of Signaling Pathways in 

Pancreatic Cancer”, Proceedings of the 3rd International 

Conference on Bioinformatics & Computational Biology, 2011

 “Model Checking of a Diabetes-Cancer Model”, accepted at 

the 3rd International Symposium on Computational Models for 

Life Sciences, 2011

 “Formal Analysis for Logical Models of Pancreatic Cancer”, 

invited submission to the 50th IEEE Conference on Decision 

and Control and European Control Conference, 2011



Conclusions & Future Work

 Our computational models and model checking verifications have and 

will continue to provide guidelines for experimental biologists to design 

new in vitro experiments in the future pancreatic cancer studies.

 The microenvironment of pancreatic cancer cells (PCC): interaction 

between pancreatic stellate cell and PCC (UPMC, in progress).

 Collaborated with Prof. Tongtong Wu at UMD, we have identified an 8-

gene signature for pancreatic cancer survival (in progress).

 Collaborated with TGEN, we are working on the EGFR pathway in 

pancreatic cancer. (in progress)

 Possible collaboration with UCSF Diabetes institute director, Matthias 

Hebrok, to study the association between diabetes & pancreatic cancer.
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