
Analyzing Data Structure Choices for On-The-Fly Real Time Model Checking

Peter Fontana and Rance Cleaveland University of Maryland, College Park Work In Progress, April 28, 2011

Real-Time Model Checking

TCTL (Invalid): $AF_{<\infty}$ [near \vee in] **TCTL (Valid):** $AG_{<\infty}$ [near $\rightarrow AF_{\leq TP+TDU}$ [far]]

Background

- Timed Automata model checkers
 - UPPAAL, RED, KRONOS
 - Restricted sets of properties
- Predicate Equation Systems (PES) [Zhang, Cleaveland, 2005]
 - First order logic with fixpoint formulae
 - General framework for on-the-fly model checking

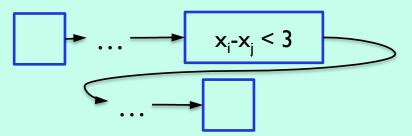
On-The-Fly Model Checking

- Goal-directed proof construction
- Uses circularity to detect fixpoints
- For timed automata:
 - Clock zones represent sets of states concisely
 - Clock zone data structures important for performance

Goals

- Investigate the impact of clock zone data structures of on-the-fly model checking performance
- Context: use PES engine to model check a subset of SIMULINK

Clock Zones


- Example: $x_1 = 2 \land x_2 < 3 \land x_1 x_3 \le 1$
- Clock Zone = convex set of clock constraints
- Definition:

z := x < c | x > c | x \le c | x \ge c | x \ge c | x - y < c | x - y > c | x - y \le c | x - y \ge c | z₁ \land z₂

Clock Zone Implementations

 DBM: Matrix
(Difference Bound Matrix)

 CRDZone: Linked list, nodes in lexicographical order (omit implicit nodes)

Experiment

- Purpose: Analyze performance of DBM, CRDZone on PES-based on-the-fly model checking
- Hypothesis: The CRDZone will improve time and space performance

Setup:

- Replace DBM with CRDZone in model checker
- Compare time, space on various benchmarks

Benchmark Suite

- A: valid specification, correct system
- B: invalid specification, correct system
- C: valid specification, buggy system
- 21 model-checker invocations per category

Preliminary Data Analysis

- Compare paired differences between DBM and CRDZone
 - Conclusions:
- CRDZone performs slightly faster for majority
 - Huge variation

Statistic	DBM – CRDzone (time - s)	DBM – CRDZone (space – MB)
#Benchmark	37	37
Mean	0.42	-104.0
Standard Deviation	1001.40	298.2
95% Cl (Mean)	-333.67 – 334.10	-203.4 – (-4.6)
P-Value for Mean ≠ 0	0.999	0.033
Median	7.21	-0.5
P-Value for Median $\neq 0$	0.012	0.157

Future Work

- Expand checkable specification range
- Continue optimizing code for performance
- Further uses for PES Engine
 - SIMULINK
 - Vacuity checking