# Towards a Theory of Composition for Distributed Control Future Work

### James Ferlez

Electrical and Computer Engineering The Institute for Systems Research

#### with

### Peter Fontana

#### Rance Cleaveland

### Steve Marcus

Computer Science The Institute for Systems Research Computer Science The Institute for Systems Research Electrical and Computer Engineering The Institute for Systems Research

#### April 28, 2011





# Motivation





(a) Powertrain Diagram of a Hybrid Truck [Tate] (b) On the road! [Wikipedia]

• Notice the presence of multiple controllers for separate subsystems (in particular for the engine)!



• What happens when we connect multiple controlled systems?



- What happens at the interface? What if both controllers want to use the same actuator?
- Do the composed controllers still "control" the composed plant?
- What properties are preserved under these operations?



Previous work from computer scientists: (e.g. [Bornot] and [Henzinger])

- Composition mostly on the discrete side
- Mostly concerned with linear hybrid automata
- Models tend to use  $\dot{x} = A_j x$  instead of, e.g.  $\dot{x} = \widetilde{A}_j x + \widetilde{B}_j f_j(x)$ (where j indexes states in an automaton)

## Important goal 1

• A more general notion of composition is needed



Previous work in the control community:

- This is not distributed control (in the usual sense)
- LOTS of work on input/output structures, e.g. feedback
- Behavioral approach typically applied to a single controller/plant (e.g. [van der Schaft 04], [van der Schaft 02], [Julius], [Tabuada])

## Important goal 2

• Treat composition from a component based perspective



For both goals, we need to be able to think more generally about the composition of continuous systems.

## Behavioral Approach [Willems 07]

Model dynamical systems in terms of "behaviors", i.e. time trajectories of variables. Compare to the language of an automaton.

# Definition [Willems 07]

A Dynamical System  $\boldsymbol{\Sigma}$  is a triple:

$$\Sigma = (\mathbb{T}, \mathbb{W}, \mathcal{B})$$

where

$$\mathbb{T} \triangleq \text{time axis (e.g. } \mathbb{R} \text{ for time).}$$
$$\mathbb{W} \triangleq \text{signal space (e.g. } \mathbb{R}^n \text{ for } n \text{ real signals)}$$
$$\mathcal{B} \triangleq \text{set of behaviors} \subseteq \mathbb{W}^{\mathbb{T}} \text{ (i.e. maps from } \mathbb{T} \text{ to } \mathbb{W})$$

# The Behavioral Approach (continued)



The behavioral approach of Willems provides a physically sound means of *interconnecting dynamical systems* through the idea of *shared variables*.

Example

- $\Sigma_1$  might model an electric motor  $\Sigma_2$  might model a transmission
- Connect motor to the transmission with a gear  $\implies$  (linear) velocities are now shared!



• (Notice input/output ambiguity under regenerative braking!)



### Notation

π'n

Let  $\Sigma_i = (\mathbb{T}, \mathbb{W}_i, \mathcal{B}_i)$ ,  $i \in \{1, 2\}$  be two dynamical systems where:

$$\mathbb{I} = \mathbb{I}$$

$$\mathbb{W}_{i} = \mathbb{R}^{n_{i}} = \mathbb{X}_{i,1} \times \ldots \times \mathbb{X}_{i,n_{i}}$$

$$x_{i} \in \mathcal{B}_{i} \implies x_{i}(t) = [x_{i,1}(t) \quad \ldots \quad x_{i,n_{i}}(t)] \in \mathbb{W}_{i} \quad \forall t \in \mathbb{T}$$

# Interconnection via Shared Variables [Willems 07], [Willems 97]

We can define the interconnection of  $\Sigma_1$  and  $\Sigma_2$  on  $X_{1,1}$  and  $X_{2,1}$  (for example) as the following dynamical system:

$$\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathcal{B})$$

where

$$\mathcal{B} = \{(x_1, x_2) \in \mathcal{B}_1 \times \mathcal{B}_2 : x_{1,1}(t) = x_{2,1}(t) \ \forall t \in \mathbb{T}\}$$

(Duplication of  $X_{1,1}$  and  $X_{2,1}$  for notational convenience.)

# The Behavioral Approach and Composition



- This notion of interconnection is a means of composing two dynamical systems
- We can think of composition more broadly, though:





### What if two controllers want to use the same actuator?

## Example



Ferlez et. al. : Composition for Distributed Control





- Defining composition operators
- Invariants under composition
- Design questions, e.g.



• Stochastic systems?



- File:fedex-truck-chicago.jpg. Wikipedia. http: //en.wikipedia.org/wiki/File:Fedex-truck-Chicago.jpg.
  - Sebastien Bornot and Joseph Sifakis. On the composition of hybrid systems. *Hybrid Systems: Computation and Control*, 1998.

## Thomas A Henzinger.

The Theory of Hybrid Automata.

Edward Dean Tate Jr, Jessy W. Grizzle, and Huei Peng. Shortest path stochastic control for hybrid electric vehicles. Int. J. Robust Nonlinear Control, 18(14):1409–1429, December 2007.

# References (continued)



A. Agung Julius, S.N. Strubbe, and A. J van der Schaft. Control of hybrid behavioral automata by interconnection. *IFAC*, pages 1–6, Jan 2003.

# Paulo Tabuada.

Controller synthesis for bisimulation equivalence. *arXiv.org*, math.OC, Jun 2007.

- A. J. van der Schaft and A. Agung Julius.
   Achievable behavior by composition.
   Proceedings of the 41st IEEE Conference on Decision and Control, 2002, pages 7–12, 2002.
- A. J. van der Schaft and A. Agung Julius.
   A behavioral framework for compositionality: linear systems, discrete event systems and hybrid systems.
   pages 1–14, May 2004.





## Jan Willems.

The Behavioral Approach to Open and Interconnected Systems. *IEEE Control Systems Magazine*, 27(6):46–99, Dec 2007.

# Jan Willems.

On interconnections, control, and feedback. *IEEE Transactions on Automatic Control*, 42(3):326–339, Mar 1997.