

Unifying proof theoretic/logical and algebraic abstractions for inference and verification

Patrick Cousot

NYU
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Objective

NSF CMACS expedition, Pl meeting, Universiy of Marranan, College Park, MD, 0428-292011

Algebraic abstractions

- Used in abstract interpretation, model-checking,...
- System properties and specifications are abstracted as an algebraic lattice (abstraction-specific encoding of properties)
- Fully automatic: system properties are computed as fixpoints of algebraic transformers
- Several separate abstractions can be combined with the reduced product

SF CMACS expedtion, PI meeting Universily of Marrland, College Park, MD, 0428-292011 3 | 4 |
| :--- |

Proof theoretic/logical abstractions

- Used in deductive methods
- System properties and specifications are expressed with formulæ of first-order theories (universal encoding of properties)
- Partly automatic: system properties are provided manually by end-users and automatically checked to satisfy verification conditions (with implication defined by the theories)
- Various theories can be combined by Nelson-Oppen procedure

NSF CMACS expedition, PI meeting Universiy of Maryland, College Park, MD, 04128-2920011

Objective

- Show that proof-theoretic/logical abstractions are a particular case of algebraic abstractions
- Show that Nelson-Oppen procedure is a particular case of reduced product
- Use this unifying point of view to propose a new combination of logical and algebraic abstractions
\Rightarrow Convergence of proof theoretic/ logical and algebraic propertyinference and verification methods

WSF CMACS expedition, PI meeting University of Marryand, College Park, MD. 0428 -2912011

Concrete semantics

Programs (syntax)

- Expressions (on a signature $\langle\mathbb{f}, \mathbb{P}\rangle$)

$\mathrm{x}, \mathrm{y}, \mathrm{z}, \ldots \in \mathrm{x}$	variables
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots \in \mathbb{f}^{0}$	constants
$\mathrm{f}, \mathrm{~g}, \mathrm{~h}, \ldots \in \mathbb{f}^{n}, \quad \mathbb{f} \triangleq \bigcup_{n \geqslant 0} \mathfrak{f}^{n}$	function symbols of arity $n \geqslant 1$
$t \in \mathbb{T}(\mathrm{x}, \mathbb{f}) \quad t::=\mathrm{x}\|\mathrm{C}\| \mathrm{f}\left(t_{1}, \ldots, t_{n}\right)$	terms
$\mathrm{p}, \mathrm{q}, \mathrm{r}, \ldots \in \mathbb{p}^{n}, \quad \mathrm{p}^{0} \triangleq\{\mathrm{ff}, \mathrm{tt}\}, \quad \mathrm{p} \triangleq \bigcup_{n \geqslant 0} \mathbb{P}^{n}$	predicate symbols of arity $n \geqslant 0$,
$a \in \mathbb{A}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \quad a::=\mathbb{f f}\left\|\mathrm{p}\left(t_{1}, \ldots, t_{n}\right)\right\| \neg a$	atomic formulæ
$e \in \mathbb{E}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \triangleq \mathbb{T}(\mathbb{x}, \mathbb{f}) \cup \mathbb{A}(\mathbb{x}, \mathbb{f}, \mathbb{p})$	program expressions
$\varphi \in \mathbb{C}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \quad \varphi::=a \mid \varphi \wedge \varphi$	clauses in simple conjunctive normal form

- Programs (including assignment, guards, loops, ...)
$\mathrm{P}, \ldots \in \mathbb{P}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \quad \mathrm{P}::=\mathrm{x}:=e|\varphi| \ldots \quad$ programs

5
NSF CMACS expedition, P1 meeting U University of Marrlend, College Park, MD. $0428-2921011$

Programs (interpretation)

- Interpretation $I \in \mathfrak{J}$ for a signature $\langle\mathbb{f}, \mathbb{p}\rangle$ is $\left\langle I_{\mathcal{V}}, I_{\gamma}\right\rangle$ such that
- $I_{\mathcal{V}}$ is a non-empty set of values,
$-\forall \mathrm{c} \in \mathbb{f}^{0}: I_{\gamma}(\mathrm{c}) \in I_{\mathcal{V}}, \quad \forall n \geqslant 1: \forall \mathrm{f} \in \mathbb{f}^{n}: I_{\gamma}(\mathrm{f}) \in I_{\mathcal{V}}^{n} \rightarrow I_{\mathcal{V}}$,
$-\forall n \geqslant 0: \forall \mathrm{p} \in \mathbb{p}^{n}: I_{\gamma}(\mathrm{p}) \in I_{V}^{n} \rightarrow \mathcal{B}$.
$\mathcal{B} \triangleq\{$ false, true $\}$
- Environments

$$
\eta \in \mathcal{R}_{I} \triangleq \mathbb{x} \rightarrow I_{\mathcal{V}} \quad \text { environments }
$$

- Expression evaluation
$\llbracket a \rrbracket_{l} \eta \in \mathcal{B}$ of an atomic formula $a \in \mathbb{A}(\mathbb{x}, \mathbb{f}, \mathbb{p})$
$\llbracket t \rrbracket_{1} \eta \in I_{\mathcal{V}}$ of the term $t \in \mathbb{T}(\mathbb{x}, \mathbb{f})$

NSF CMACS expedition, PI meeting Universiy of Maryland, College Park, MD, 04128-292011

Programs (concrete semantics)

- The program semantics is usually specified relative to a standard interpretation $\mathfrak{I} \in \mathfrak{J}$.
- The concrete semantics is given in post-fixpoint form (in case the least fixpoint which is also the least postfixpoint does not exist, e.g. inexpressibility in Hoare logic)

$\begin{aligned} \mathcal{R}_{\mathfrak{I}} & \\ \mathcal{P}_{\mathfrak{I}} & \triangleq \wp\left(\mathcal{R}_{\mathfrak{I}}\right) \\ F_{\mathfrak{I}} \llbracket \mathrm{P} \rrbracket & \in \mathcal{P}_{\mathfrak{I}} \rightarrow \mathcal{P}_{\mathfrak{I}} \\ C_{\mathfrak{I}} \llbracket \mathrm{P} \rrbracket \triangleq \boldsymbol{p o s t f}^{\subseteq} F_{\mathfrak{J}} \llbracket \mathrm{P} \rrbracket & \in \wp\left(\mathcal{P}_{\mathfrak{I}}\right) \end{aligned}$	concrete observables ${ }^{5}$ concrete properties ${ }^{6}$ concrete transformer of program P concrete semantics of program P
where postfp ${ }^{\leq} f \triangleq\{x \mid f(x) \leq x\}$	
${ }^{5}$ Examples of observables are set of states, set of partial or comp ${ }^{6} \mathrm{~A}$ property is understood as the set of elements satisfying this	ete execution traces, infinite/transfinite execution trees, etc operty.

Example of program concrete semantics

- Program
$\mathrm{P} \triangleq \mathrm{x}=1$; while true $\{\mathrm{x}=\operatorname{incr}(\mathrm{x})\}$
- Arithmetic interpretation
\mathfrak{J} on integers $\mathfrak{J}_{V}=\mathbb{Z}$
- Loop invariant $\quad \mathrm{Ifp}^{\varsigma} F_{S}[\mathrm{P}]=\left\{\eta \in \mathcal{R}_{s} \mid 0<\eta(x)\right\}$
where

$$
\begin{aligned}
& \mathcal{R}_{\mathfrak{I}} \triangleq \mathbb{X} \rightarrow \mathfrak{I}_{V} \quad \text { concrete environments } \\
& F_{\mathfrak{S}}[\mathrm{P}](X) \xlongequal{\hat{\wedge}}\left\{\eta \in \mathcal{R}_{\mathrm{S}} \mid \eta(\mathrm{x})=1\right\} \cup\{\eta[\mathrm{x} \leftarrow \eta(\mathrm{x})+1] \mid \eta \in X\}
\end{aligned}
$$

- The strongest invariant is $\mathbf{l f p}^{\varsigma} F_{\mathfrak{S}} \llbracket \mathrm{P} \rrbracket=\cap$ postfp $^{c} F_{\mathfrak{S}} \llbracket \mathrm{P} \rrbracket$
- Expressivity: the lfp may not be expressible in the abstract in which case we use the set of possible invariants $C_{\mathfrak{g}} \llbracket \mathrm{P} \rrbracket \stackrel{\wedge}{\triangleq}$ postfp ${ }^{\varsigma} F_{\mathfrak{Y}} \llbracket \mathrm{P} \rrbracket$

Concrete domains

- The standard semantics describes computations of a system formalized by elements of a domain of observables $\mathcal{R}_{\mathfrak{J}}$ (e.g., set of traces, states, etc)
The properties $\mathcal{P}_{\mathfrak{I}} \triangleq \wp\left(\mathcal{R}_{\mathfrak{J}}\right)$ (a property is the set of elements with that property) form a complete lattice $\left\langle\mathcal{P}_{\mathfrak{J}}, \subseteq, \emptyset, \mathcal{R}_{\mathfrak{I}}, \cup \cap\right\rangle$
- The concrete semantics $C_{S}[\mathbb{P}] \stackrel{\triangleq}{\triangleq}$ postff ${ }^{\varsigma} F_{S}[P]$ defines the system properties of interest for the verification
- The transformer $F_{g}[\mathbb{P}]$ is defined in terms of primitives, e.g.

Extension to multi-interpretations

- Programs have many interpretations $I \in \wp(\mathfrak{J})$.
- Multi-interpreted semantics

$\begin{aligned} \mathcal{R}_{I} & \\ \mathcal{P}_{I} & \triangleq I \in I \nvdash \wp\left(\mathcal{R}_{I}\right) \\ & \simeq \wp\left(\left\{\langle I, \eta\rangle \mid I \in I \wedge \eta \in \mathcal{R}_{I}\right\}\right)^{8} \end{aligned}$	program observables for interpretation $I \in I$ interpreted properties for the set of interpretations I
$\begin{aligned} F_{I} \llbracket \mathrm{P} \rrbracket & \in \mathcal{P}_{I} \rightarrow \mathcal{P}_{I} \\ & \triangleq \lambda P \in \mathcal{P}_{I} \cdot \lambda I \in I \cdot F_{I} \llbracket \mathrm{P} \rrbracket(P(I)) \end{aligned}$	multi-interpreted concrete transformer of program P
$\begin{aligned} C_{I} \llbracket \mathrm{P} \rrbracket & \in \wp\left(\mathcal{P}_{I}\right) \\ & \triangleq \operatorname{postf}^{\dot{\varsigma}} F_{I} \llbracket \mathrm{P} \rrbracket \end{aligned}$	multi-interpreted concrete semantics
where $¢$ is the pointwise subset ordering.	

[^0]

Algebraic Abstractions

Abstract domains

$\langle A, \longleftarrow, \perp, \mathrm{~T}, \sqcup, \sqcap, \nabla, \Delta, \overline{\mathrm{f}}, \overline{\mathrm{b}}, \overline{\mathrm{p}}, \ldots\rangle$
where

```
P,Q,\ldots\inA
    \sqsubseteq \in A \times A \rightarrow \mathcal { B }
    \perp,T \in A
\sqcup,П,\nabla,\Delta \in A > A->A
```

$\overline{\mathrm{f}} \in(\mathbb{x} \times \mathbb{E}(\mathbb{x}, \mathbb{f}, \mathbb{p})) \rightarrow A \rightarrow A$ $\overline{\mathrm{b}} \in(\mathbb{x} \times \mathbb{E}(\mathbb{x}, \mathbb{f}, \mathfrak{p})) \rightarrow A \rightarrow A$ $\overline{\mathrm{p}} \in \mathbb{C}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow A \rightarrow A$
abstract properties
abstract partial order ${ }^{9}$
infimum, supremum
abstract join, meet, widening, narrowing
abstract forward assignment transformer abstract backward assignment transformer abstract condition transformer.

Abstract semantics

- A abstract domain
- \sqsubseteq abstract logical implication
- $\bar{F} \llbracket \mathrm{P} \rrbracket \in A \rightarrow A$ abstract transformer defined in term of abstract primitives
$\overline{\mathrm{f}} \in(\mathbb{x} \times \mathbb{E}(\mathbb{x}, \mathbb{f}, \mathbb{p})) \rightarrow A \rightarrow A \quad$ abstract forward assignment transformer
$\overline{\mathrm{b}} \in(\mathbb{x} \times \mathbb{E}(\mathbb{x}, \mathbb{f}, \mathbb{p})) \rightarrow A \rightarrow A \quad$ abstract backward assignment transformer
$\overline{\mathrm{p}} \in \mathbb{C}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow A \rightarrow A$ abstract condition transformer.
- $\bar{C} \llbracket \mathrm{P} \rrbracket \triangleq\left\{\mathbf{I f} \mathrm{p}^{\sqsubset} \bar{F} \llbracket \mathrm{P} \rrbracket\right\}$ least fixpoint semantics, if any
- $\bar{C} \llbracket \mathrm{P} \rrbracket \triangleq\{\bar{P} \mid \bar{F} \llbracket \mathrm{P} \rrbracket(\bar{P}) \sqsubseteq \bar{P}\}$ or else, post-fixpoint abstract semantics

Soundness of the abstract semantics

- Concretization

$$
\gamma \in A \xrightarrow{\check{\rightarrow}} \mathcal{P}_{\mathfrak{I}}
$$

- Soundness of the abstract semantics

$$
\forall \bar{P} \in A:(\exists \bar{C} \in \bar{C} \llbracket \mathbb{P} \rrbracket: \bar{C} \sqsubseteq \bar{P}) \Rightarrow(\exists C \in C \llbracket \mathrm{P} \rrbracket: C \subseteq \gamma(\bar{P}))
$$

- Sufficient local soundness conditions:

$(\bar{P} \sqsubseteq \bar{Q}) \Rightarrow(\gamma(\bar{P}) \subseteq \gamma(\bar{Q}))$	order	$\gamma(\perp)=\emptyset$	infimum
$\gamma(\bar{P} \sqcup \bar{Q}) \supseteq(\gamma(\bar{P}) \cup \gamma(\bar{Q}))$	join	$\gamma(\mathrm{T})=\top_{\mathfrak{I}}$	supremum

$$
\begin{array}{rll}
\gamma(\overline{\mathrm{f}} \llbracket \mathrm{x}:=e \rrbracket \bar{P}) \supseteq \mathrm{f}_{\Im} \llbracket \mathrm{x}:=e \rrbracket \gamma(\bar{P}) & & \text { assignment post-condition } \\
\gamma(\overline{\mathrm{b}} \llbracket \mathrm{x}:=e \rrbracket \bar{P}) & \supseteq \mathrm{b}_{\mathfrak{T}} \llbracket \mathrm{x}:=e \rrbracket \gamma(\bar{P}) & \text { assignment pre-condition } \\
\gamma(\overline{\mathrm{p}} \llbracket \varphi \rrbracket \bar{P}) \supseteq \mathrm{p}_{\mathfrak{T}} \llbracket \varphi \rrbracket \gamma(\bar{P}) & \text { test }
\end{array}
$$

implying

```
\forall\overline{P}\inA:F\llbracket\textrm{P}\rrbracket\circ\gamma(\overline{P})\subseteq\gamma\circ\overline{F}\llbracket\textrm{P}\rrbracket(\overline{P})
```


Beyond bounded verification:Widening

- Definition of widening:

Let $\langle A, \sqsubseteq\rangle$ be a poset. Then an over-approximating widening $\nabla \in$ $A \times A \mapsto A$ is such that
(a) $\forall x, y \in A: x \sqsubseteq x \nabla y \wedge y \leqslant x \nabla y^{14}$.
A terminating widening $\nabla \in A \times A \mapsto A$ is such that
(b) Given any sequence $\left\langle x^{n}, n \geqslant 0\right\rangle$, the sequence $y^{0}=$ $x^{0}, \ldots, y^{n+1}=y^{n} \nabla x^{n}, \ldots$ converges (i.e. $\exists \ell \in \mathbb{N}$: $\forall n \geqslant \ell: y^{n}=y^{\ell}$ in which case y^{ℓ} is called the limit of the widened sequence $\left\langle y^{n}, n \geqslant 0\right\rangle$).

Traditionally a widening is considered to be both over-approximating and terminating.

Beyond bounded verification:Widening

- Iterations with widening

The iterates of a transformer $\bar{F} \llbracket P \rrbracket \in A \mapsto A$ from the infimum
$\perp \in A$ with widening $\nabla \in A \times A \mapsto A$ in a poset $\langle A, \sqsubseteq\rangle$ are defined by recurrence as $\bar{F}^{0}=\perp, \bar{F}^{n+1}=\bar{F}^{n}$ when $\bar{F} \llbracket P \rrbracket\left(\bar{F}^{n}\right) \sqsubseteq \bar{F}^{n}$ and $\bar{F}^{n+1}=\bar{F}^{n} \nabla \bar{F} \llbracket P \rrbracket\left(\bar{F}^{n}\right)$ otherwise.

- Soundness of iterations with widening

The iterates in a poset $\langle A, \sqsubseteq, \perp\rangle$ of a transformer $\bar{F} \llbracket P \rrbracket$ from the infimum \perp with widening ∇ converge and their limit is a post-fixpoint of the transformer.

NSF CMACS expedition, PI meeting, University of Marranad, Collge Park, MD, 04128-292001I

Implementation notes

- Each abstract domain
$\langle A, \sqsubseteq, \perp, \top, \sqcup, \sqcap, \nabla, \Delta, \overline{\mathrm{f}}, \overline{\mathrm{b}}, \overline{\mathrm{p}}, \ldots\rangle$ is implemented separately by hand, by providing a specific computer representation of properties in A, and algorithms for the logical operations $\sqsubset, \perp, \top, \sqcup, \sqcap$, and transformers $\overline{\mathrm{f}}, \overline{\mathrm{b}}, \overline{\mathrm{p}}, \ldots$
- Different abstract domains are combined into a reduced product
- Very efficient but implemented manually (requires skilled specialists)

First-order logic

NSF CMACS expedition, PI meeting Universiy of Marrland, College Park, MD, 04128-292011

First-order logical formulæ \& satisfaction

- Syntax
$\Psi \in \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p})$
$\Psi::=a|\neg \Psi| \Psi \wedge \Psi \mid \exists \mathrm{x}: \Psi \quad$ quantified first-order formulæ
a distinguished predicate $=\left(t_{1}, t_{2}\right)$ which we write $t_{1}=t_{2}$.
- Free variables \vec{x}_{Ψ}
- Satisfaction
$I \models_{\eta} \Psi, \quad$ interpretation I and an environment η satisfy a formula Ψ
- Equality

```
I}\mp@subsup{\vDash}{\eta}{}\mp@subsup{t}{1}{}=\mp@subsup{t}{2}{}\triangleq\llbracket[\mp@subsup{t}{1}{}\mp@subsup{\rrbracket}{l}{}\eta=I\\llbracket\mp@subsup{t}{2}{}\mp@subsup{\rrbracket}{l}{}
```

where $=_{I}$ is the unique reflexive, symmetric, antisymmetric, and transitive relation on $I_{\mathcal{V}}$.

Extension to multi-interpretations

- Property described by a formula for multiple interpretations

$$
\mathcal{I} \in \wp(\mathfrak{J})
$$

- Semantics of first-order formulæ

$$
\begin{aligned}
\gamma_{I}^{\mathfrak{a}} & \in \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{P}) \xrightarrow{\dagger} \mathcal{P}_{I} \\
\gamma_{I}^{\mathfrak{a}}(\Psi) & \triangleq\left\{\langle I, \eta\rangle \mid I \in \mathcal{I} \wedge I \vDash_{\eta} \Psi\right\}
\end{aligned}
$$

- But how are we going to describe sets of interpretations $I \in \wp(\mathfrak{J})$?

Defining multiple interpretations as models of theories

- Theory: set \mathcal{T} of theorems (closed sentences without any free variable)
- Models of a theory (interpretations making true all theorems of the theory)

$$
\begin{aligned}
\mathfrak{M}(\mathcal{T}) & \triangleq\left\{I \in \mathfrak{J} \mid \forall \Psi \in \mathcal{T}: \exists \eta: I \vDash_{\eta} \Psi\right\} \\
& =\left\{I \in \mathfrak{J} \mid \forall \Psi \in \mathcal{T}: \forall \eta: I \vDash_{\eta} \Psi\right\}
\end{aligned}
$$

Classical properties of theories

- Decidable theories: $\forall \Psi \in \mathbb{F}(\mathbb{X}, \mathbb{f}, \mathbb{p})$: $\operatorname{decide}_{\mathcal{T}}(\Psi) \triangleq(\Psi \in \mathcal{T})$ is computable
- Deductive theories: closed by deduction $\forall \Psi \in \mathcal{T}: \forall \Psi^{\prime} \in \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p})$, if $\Psi \Rightarrow \Psi^{\prime}$ implies $\Psi^{\prime} \in \mathcal{T}$
- Satisfiable theory:
$\mathfrak{M}(\mathcal{T}) \neq \emptyset$
- Complete theory:
for all sentences Ψ in the language of the theory, either Ψ is in the theory or $\neg \Psi$ is in the theory.

NSF CMACS expedition, PI meeting, University of Marrland, College Park, MD, 0412-2921201I

Checking satisfiability modulo theory

- Validity modulo theory

```
\mp@subsup{valid}{\mathcal{T}}{}(\Psi)\triangleq\forallI\in\mathfrak{M}(\mathcal{T}):\forall\eta:I\mp@subsup{\vDash}{\eta}{}\Psi
```

- Satisfiability modulo theory (SMT)

```
satisfiable}\mp@subsup{\mathcal{T}}{(}{}(\Psi)\triangleq\existsI\in\mathfrak{M}(\mathcal{T}):\exists\eta:I\mp@subsup{\vDash}{\eta}{}
```

- Checking satisfiability for decidable theories

satisfiable $_{\mathcal{T}}(\Psi) \Leftrightarrow \neg\left(\operatorname{decide}_{\mathcal{T}}\left(\forall \overrightarrow{\mathrm{x}}_{\Psi}: \neg \Psi\right)\right)$	(when \mathcal{T} is decidable and deductive)
satisfiable $_{\mathcal{T}}(\Psi) \Leftrightarrow\left(\operatorname{decide}_{\mathcal{T}}\left(\exists \overrightarrow{\mathrm{x}}_{\Psi}: \Psi\right)\right)$	(when \mathcal{T} is decidable and complete)

- Most SMT solvers support only quantifier-free formulæ

Logical Abstractions

NSF CMACS expedition, PI meeting, University of Marranad, Collge Park, MD, 04128-292001I

Implementation notes ..

- Universal representation of abstract properties by logical formulæ
- Trival implementations of logical operations $f f, t t, \vee, \wedge$,
- Provers or SMT solvers can be used for the abstract implication \sqsubseteq,
- Concrete transformers are purely syntactic

```
\(\mathrm{f}_{\mathrm{a}} \in(\mathbb{x} \times \mathbb{T}(\mathbb{x}, \mathbb{f})) \rightarrow \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p})\)
\(\mathrm{f}_{\mathrm{a}}[\mathrm{x}:=t] \Psi \triangleq \exists x^{\prime}: \Psi\left[\mathrm{x} \leftarrow x^{\prime}\right] \wedge \mathrm{x}=t\left[\mathrm{x} \leftarrow x^{\prime}\right]\)
\(\mathrm{b}_{\mathfrak{a}} \in(\mathbb{x} \times \mathbb{T}(\mathbb{x}, \mathbb{f})) \rightarrow \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p})\)
\(\mathrm{b}_{\mathrm{a}}[\mathrm{x}:=t \rrbracket \Psi \triangleq \Psi[\mathrm{x} \leftarrow t]\)
\(\mathrm{p}_{\mathrm{a}} \in \mathbb{C}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow \mathbb{F}(\mathrm{x}, \mathbb{f}, \mathbb{p}) \rightarrow \mathbb{F}(\mathrm{x}, \mathbb{f}, \mathbb{p})\)
\(\mathrm{p}_{\mathrm{a}} \llbracket \varphi \rrbracket \Psi \triangleq \Psi \wedge \varphi\)
```

axiomatic forward assignment trans former
axiomatic backward assignment transformer
axiomatic transformer for program test of condition φ.
.../... © P. Cousot $\frac{4}{1}$

but ...

.../... so the abstract transformers follows by abstraction

| $\overline{\mathrm{f}}_{\mathrm{a}} \llbracket \mathrm{x}:=t \rrbracket \Psi \triangleq \alpha_{A}^{I}\left(\mathrm{f}_{\mathrm{a}} \llbracket \mathrm{x}:=t \rrbracket \Psi\right)$ | abstract forward assignment transformer |
| ---: | :--- | :--- |
| $\overline{\mathrm{b}}_{\mathrm{a}} \llbracket \mathrm{x}:=t \rrbracket \Psi \triangleq \alpha_{A}^{I}\left(\mathrm{~b}_{\mathrm{a}} \llbracket \mathrm{x}:=t \rrbracket \Psi\right)$ | abstract backward assignment transformer |
| $\overline{\mathrm{p}}_{\mathrm{a}} \llbracket \varphi \rrbracket \Psi \triangleq \alpha_{A}^{I}\left(\mathrm{p}_{\mathrm{a}} \llbracket \varphi \rrbracket \Psi\right)$ | abstract transformer for program test of condition | $\overline{\mathrm{p}}_{\mathrm{a}} \llbracket \varphi \rrbracket \Psi \triangleq \boldsymbol{\alpha}_{A}^{I}\left(\mathrm{p}_{\mathrm{a}} \llbracket \varphi \rrbracket \Psi\right) \quad$ abstract transformer for program test of condition

- The abstraction algorithm $\quad \alpha_{A}^{I} \in \mathbb{F}(\mathbb{x}, \mathbb{f}, \mathbb{p}) \rightarrow A$ to abstract properties in A may be non-trivial (e.g. quantifiers elimination)
- A widening ∇ is needed to ensure convergence of the fixpoint iterates (or else ask the end-user)

Example I of widening: thresholds

- Choose a subset W of A satisfying the ascending chain condition for \sqsubseteq,
- Define $X \nabla Y$ to be (one of) the strongest $\Psi \in W$ such that $Y \Rightarrow \Psi$

Example II of bounded widening: Craig interpolation

- Use Craig interpolation (knowing a bound e.g. the specification)
- Move to thresholds to enforced convergence after k widenings with Craig interpolation

Cartesian product

- Definition of the Cartesian product:

Let $\left\langle A_{i}, \sqsubseteq_{i}\right\rangle, i \in \Delta$, Δ finite, be abstract domains with increasing concretization $\gamma_{i} \in A_{i} \rightarrow \mathfrak{P}_{I}^{\Sigma_{O}}$. Their Cartesian product is $\langle\vec{A}$, $\vec{\sqsubseteq}\rangle$ where $\vec{A} \triangleq X_{i \in \Delta} A_{i},(\vec{P} \stackrel{\rightharpoonup}{\sqsubseteq}) \triangleq$ $\bigwedge_{i \in \Delta}\left(\vec{P}_{i} \sqsubseteq_{i} \vec{Q}_{i}\right)$ and $\vec{\gamma} \in \vec{A} \rightarrow \mathfrak{P}_{I}^{\Sigma_{O}}$ is $\vec{\gamma}(\vec{P}) \triangleq \bigcap_{i \in \Delta} \gamma_{i}\left(\vec{P}_{i}\right)$.

Reduced product

- Definition of the Reduced product:

Let $\left\langle A_{i}, \sqsubseteq_{i}\right\rangle, i \in \Delta$, Δ finite, be abstract domains with increasing concretization $\gamma_{i} \in A_{i} \rightarrow \mathfrak{P}_{I}^{\Sigma_{O}}$ where $\vec{A} \triangleq X_{i \in \Delta} A_{i}$ is their Cartesian product. Their reduced product is $\langle\vec{A} / \ni$, $\vec{\sqsubseteq}\rangle$ where $(\vec{P} \xlongequal[\equiv]{\equiv}) \triangleq(\vec{\gamma}(\vec{P})=\vec{\gamma}(\vec{Q}))$ and $\vec{\gamma}$ as well as $\vec{\sqsubseteq}$ are naturally extended to the equivalence classes $[\vec{P}] / \equiv$, $\vec{P} \in \vec{A}$, of \equiv by $\vec{\gamma}([\vec{P}] / 引)=\vec{\gamma}(\vec{P})$ and $[\vec{P}] / \equiv \vec{\varrho}[\vec{Q}] / \supseteqq \triangleq$ $\exists \vec{P}^{\prime} \in[\vec{P}] / \supseteqq: \exists \overrightarrow{Q^{\prime}} \in[\vec{Q}] / \equiv: \vec{P}^{\prime} \stackrel{\rightharpoonup}{Q^{\prime}}$.

- In practice, the reduced product may be complex to compute but we can use approximations such as the iterated pairwise reduction of the Cartesian product
\qquad

Reduction

- Example: intervals x congruences
$\rho(x \in[-1,5] \wedge x=2 \bmod 4) \equiv x \in[2,2] \wedge x=2 \bmod 0$
are equivalent
- Meaning-preserving reduction:

Let $\langle A, \sqsubseteq\rangle$ be a poset which is an abstract domain with concretization $\gamma \in A \rightarrow C$ where $\langle C, \leqslant\rangle$ is the concrete domain. A meaning-preserving map is $\rho \in A \rightarrow A$ such that $\forall \bar{P} \in A: \gamma(\rho(\bar{P}))=\gamma(\bar{P})$. The map is a reduction if and only if it is reductive that is $\forall \bar{P} \in A: \rho(\bar{P}) \sqsubseteq \bar{P}$.

F

SF CMACS expedition, PI meeting University of Marryand, COllege Park, MD. 0428-2920011

Iterated reduction

- Definition of iterated reduction:

Let $\langle A, \sqsubseteq\rangle$ be a poset which is an abstract domain with concretization $\gamma \in A \rightarrow C$ where $\langle C, \subseteq\rangle$ is the concrete domain and $\rho \in A \rightarrow A$ be a meaning-preserving reduction.
The iterates of the reduction are $\rho^{0} \triangleq \lambda \bar{P} \cdot \bar{P}, \rho^{\lambda+1}=$ $\rho\left(\rho^{\lambda}\right)$ for successor ordinals and $\rho^{\lambda}=\prod_{\beta<\lambda} \rho^{\beta}$ for limit ordinals.
The iterates are well-defined when the greatest lower bounds Π (glb) do exist in the poset $\langle A$, $\sqsubseteq\rangle$.NSF CMACS expedition, PI meeting Universiy of Maryland, College Park, MD, 04128-2920011

Finite versus infinite iterated reduction

- Finite iterations of a meaning preserving reduction are meaning preserving (and more precise)
- Infinite iterations, limits of meaning-preserving reduction, may not be meaning-preserving (although more precise). It is when γ preserves glbs.

Pairwise reduction

- Definition of pairwise reduction

Let $\left\langle A_{i}, \sqsubseteq_{i}\right\rangle$ be abstract domains with increasing concretization $\gamma_{i} \in A_{i} \rightarrow L$ into the concrete domain $\langle L, \leqslant\rangle$.
For $i, j \in \Delta, i \neq j$, let $\rho_{i j} \in\left\langle A_{i} \times A_{j}, \sqsubseteq_{i j}\right\rangle \mapsto\left\langle A_{i} \times A_{j}, \sqsubseteq_{i j}\right\rangle$ be pairwise meaning-preserving reductions (so that $\forall\langle x$, $y\rangle \in A_{i} \times A_{j}: \rho_{i j}(\langle x, y\rangle) \sqsubseteq_{i j}\langle x, y\rangle$ and $\left(\gamma_{i} \times \gamma_{j}\right) \circ \rho_{i j}=$ $\left.\left(\gamma_{i} \times \gamma_{j}\right)^{24}\right)$.
Define the pairwise reductions $\vec{\rho}_{i j} \in\langle\vec{A}, \vec{\sqsubseteq}\rangle \mapsto\langle\vec{A}, \vec{\leftrightarrows}\rangle$ of the Cartesian product as
$\vec{\rho}_{i j}(\vec{P}) \triangleq \operatorname{let}\left\langle\vec{P}_{i}^{\prime}, \vec{P}_{j}^{\prime}\right\rangle \triangleq \rho_{i j}\left(\left\langle\vec{P}_{i}, \vec{P}_{j}\right\rangle\right)$ in $\vec{P}\left[i \leftarrow \vec{P}_{i}^{\prime}\right]\left[j \leftarrow \vec{P}_{j}^{\prime}\right]$ where $\vec{P}[i \leftarrow x]_{i}=x$ and $\vec{P}[i \leftarrow x]_{j}=\vec{P}_{j}$ when $i \neq j$.

Pairwise reduction (cont'd)

Define the iterated pairwise reductions $\vec{\rho}^{n}, \vec{\rho}^{\lambda}, \vec{\rho}^{*} \in\langle\vec{A}$, $\vec{\sqsubseteq}\rangle \mapsto\langle\vec{A}, \vec{\sqsubseteq}\rangle, n \geqslant 0$ of the Cartesian product for

$$
\vec{\rho} \triangleq \bigcirc_{\substack{i, j \in \Delta, i \neq j}} \vec{\rho}_{i j}
$$

where $\bigcirc_{i=1}^{n} f_{i} \triangleq f_{\pi_{1}} \circ \ldots \circ f_{\pi_{n}}$ is the function composition for some arbitrary permutation π of $[1, n]$.

Iterated pairwise reduction

- The iterated pairwise reduction of the Cartesian product is meaning preserving

If the limit $\vec{\rho}^{*}$ of the iterated reductions is well defined then the reductions are such that $\forall \vec{P} \in \vec{A}: \forall n \in \mathrm{~N}_{+}$: $\vec{\rho}^{\star}(\vec{P}) \stackrel{\rightharpoonup}{\leftrightharpoons} \vec{\rho}^{n}(\vec{P}) \stackrel{\rightharpoonup}{\sqsubseteq} \vec{\rho}_{i j}(\vec{P}) \stackrel{\rightharpoonup}{\sqsubseteq} \vec{P}, i, j \in \Delta, i \neq j$ and meaningpreserving since $\vec{\rho}^{\lambda}(\vec{P}), \vec{\rho}_{i j}(\vec{P}), \vec{P} \in[\vec{P}] / \equiv$.
If, moreover, γ preserves greatest lower bounds then $\vec{\rho}^{\star}(\vec{P}) \in[\vec{P}] / 引$.

Iterated pairwise reduction

- In general, the iterated pairwise reduction of the Cartesian product is not as precise as the reduced product
- Sufficient conditions do exist for their equivalence

Counter-example

- $L=\wp(\{a, b, c\})$
- $A_{1}=\{\emptyset,\{a\}, \mathrm{T}\}$
where $\mathrm{T}=\{a, b, c\}$
- $A_{2}=\{\emptyset,\{a, b\}, \mathrm{T}\}$
- $A_{3}=\{\emptyset,\{a, c\}, \top\}$
- $\langle\mathrm{T},\{a, b\},\{a, c\}\rangle / \equiv=\langle\{a\},\{a, b\},\{a, c\}\rangle$
- $\vec{\rho}_{\overrightarrow{i j}}(\langle\top,\{a, b\},\{a, c\}\rangle)=\langle\top,\{a, b\},\{a, c\}\rangle$

$$
\text { for } \Delta=\{1,2,3\}, i, j \in \Delta, i \neq j
$$

- $\vec{\rho}^{*}(\langle\top,\{a, b\},\{a, c\}\rangle)=\langle\top,\{a, b\},\{a, c\}\rangle$ is not a minimal element of $[\langle\top,\{a, b\},\{a, c\}\rangle] / \equiv$

Nelson-Oppen combination procedure

The Nelson-Oppen combination procedure

- Prove satisfiability in a combination of theories by exchanging equalities and disequalities
- Example: $\varphi \triangleq(x=\mathrm{a} \vee x=\mathrm{b}) \wedge \mathrm{f}(x) \neq \mathrm{f}(\mathrm{a}) \wedge \mathrm{f}(x) \neq \mathrm{f}(\mathrm{b})^{22}$.
- Purify: introduce auxiliary variables to separate alien terms and put in conjunctive form
$\varphi \triangleq \varphi_{1} \wedge \varphi_{2}$ where
$\varphi_{1} \triangleq(x=\mathrm{a} \vee x=\mathrm{b}) \wedge y=\mathrm{a} \wedge z=\mathrm{b}$
$\varphi_{2} \triangleq \mathrm{f}(x) \neq \mathrm{f}(y) \dot{\wedge} \mathrm{f}(x) \neq \mathrm{f}(\mathrm{z})$

The Nelson-Oppen combination procedure

```
\varphi \triangleq \varphi _ { 1 } \wedge \varphi _ { 2 } \text { where}
\varphi
\varphi \}\triangleq\textrm{f}(x)\not=`\textrm{f}(y)\wedge\textrm{f}(x)\not=\textrm{f}(z
```

- Reduce $\vec{\rho}(\varphi)$: each theory \mathcal{T}_{i} determines $E_{i j}$, a (disjunction) of conjunctions of variable (dis)equalities implied by φ_{j} and propagate it in all other componants φ_{i}

$$
\begin{aligned}
& E_{12} \triangleq(x=y) \vee(x=z) \\
& E_{21} \triangleq(x \neq y) \wedge(x \neq z)
\end{aligned}
$$

- Iterate $\vec{\rho}^{*}(\varphi)$: until satisfiability is proved in each theory or stabilization of the iterates

The Nelson-Oppen combination procedure

Under appropriate hypotheses (disjointness of the theory signatures, stably-infiniteness/shininess, convexity to avoid disjunctions, etc), the NelsonOppen procedure:

- Terminates (finitely many possible (dis)equalities)
- Is sound (meaning-preserving)
- Is complete (always succeeds if formula is satisfiable)
- Similar techniques are used in theorem provers

Program static analysis/verification is undecidable so requiring completeness is useless. Therefore the hypotheses can be lifted, the procedure is then sound and incomplete. No change to SMT solvers is needed.

The Nelson-Oppen procedure is an iterated pairwise reduced product

Observables in Abstract Interpretation

- (Relational) abstractions of values $\left(v /, \ldots, v_{n}\right)$ of program variables $\left(\mathrm{x}_{I}, \ldots, \mathrm{x}_{n}\right)$ is often too imprecise.

Example : when analyzing quaternions (a, b, c, d) we need to observe the evolution of $\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$ during execution to get a precise analysis of the normalization

- An observable is specified as the value of a function f of the values $\left(v_{1}, \ldots, v_{n}\right)$ of the program variables ($\mathrm{x} /, \ldots, \mathrm{x}_{n}$) assigned to a fresh auxiliary variable x_{0}

$$
x_{0}==f\left(v /, \ldots, v_{n}\right)
$$

(with a precise abstraction of f)

Purification $=$ Observables in A.I.

- The purification phase consists in introducing new observables
- The program can be purified by introducing auxiliary assignments of pure sub-expressions so that forward/ backward transformers of purified formulæ always yield purified formulæ
- Example (f and a, b are in different theories):

$$
y=f(x)==f(a+l) \& f(x)==f\left(2^{*} b\right)
$$

becomes

$$
z=a+l ; t=2 * b ; y=f(x)==f(z) \& f(x)=f(t)
$$

Reduction

- The transfer of a (disjunction of) conjunctions of variable (dis-)equalities is a pairwise iterated reduction
- This can be incomplete when the signatures are not disjoint

Static analysis combining logical and algebraic abstractions

Reduced product of logical and algebraic domains

- When checking satisfiability of $\varphi_{1} \wedge \varphi_{2} \wedge \ldots \wedge \varphi_{n}$, the Nelson-Oppen procedure generates (dis)-equalities that can be propagated by $\rho_{l a}$ to reduce the $P_{i}, i=I, \ldots, m$, or
- $\alpha_{i}\left(\varphi_{1} \wedge \varphi_{2} \wedge \ldots \wedge \varphi_{n}\right)$ can be propagated by $\rho_{l a}$ to reduce the $P_{i}, i={ }_{1}, \ldots, m$
- The purification to theory \mathcal{T}_{i} of $\gamma_{i}\left(P_{i}\right)$ can be propagated to φ_{i} by $\rho_{a l}$ in order to reduce it to $\varphi_{i} \wedge \gamma_{i}\left(P_{i}\right)$ (in $\left.\mathcal{T}_{i}\right)$

Advantages

- No need for completeness hypotheses on theories
- Bidirectional reduction between logical and algebraic abstraction
- No need for end-users to provide inductive invariants (discovered by static analysis)(*)
- Easy interaction with end-user (through logical formulæ)
- Easy introduction of new abstractions on either side
\Longrightarrow Extensible expressive static analyzers / verifiers
(*) may need occasionally to be strengthened by the end-user
NSF CMACS expedition, PI meeting University of Maryland, College Park, MD, 0428-292001
53

Future work

- Still at a conceptual stage
- More experimental work on a prototype is needed to validate the concept

References

1. Patrick Cousot, Radhia Cousot, Laurent Mauborgne: Logical Abstract Domains and Interpretation. In The Future of Software Engineering, S. Nanz (Ed.). © Springer 2010, Pages 48-71.
2. Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472

Conclusion

- Convergence between logic-based proof-theoretic deductive methods using SMT solvers/theorem provers and algebraic methods using modelchecking/abstract interpretation for infinite-state systems

Garrett Birkhoff (1911-1996)

abstracted logic/set theory
into lattice theory

1967 (1940). Lattice Theory, 3rd ed.
American Mathematical Society.

The End,

Thank You

NSF CMACS expedition, PI meeting Universiy of Marrland, College Park, MD, 04128-292011
[^0]: ${ }^{8}$ A partial function $f \in A \rightarrow B$ with domain $\operatorname{dom}(f) \in \wp(A)$ is understood as the relation $\{\langle x, f(x)\rangle \in A \times B \mid x \in \operatorname{dom}(f)\}$

