Statistical Model Checking

Paolo Zuliani

Joint work with Edmund M. Clarke, James R. Faeder*, Haijun Gong, Anvesh Komuravelli, André Platzer, Ying-Chih Wang Computer Science Department, CMU *Department of Computational Biology, Pitt

Problem

Verification of Stochastic Systems

- Uncertainties in
 - the system environment,
 - modeling a fault,
 - biological signaling pathways,
 - circuit fabrication (process variability)
- Transient property specification:
 - "what is the probability that the system shuts down within 0.1 ms"?
- If Φ = "system shuts down within 0.1ms"

 $Prob(\Phi) = ?$

Equivalently

- A biased coin (Bernoulli random variable):
 - Prob (Head) = p Prob (Tail) = 1-p
 - *p* is unknown
- Question: What is p?
- A solution: flip the coin a number of times, collect the outcomes, and use a statistical estimation technique.

Motivation

- State Space Exploration infeasible for large systems
 - Symbolic MC with OBDDs scales to 10³⁰⁰ states
 - Scalability depends on the structure of the system
- Pros: Simulation is feasible for many more systems
 - Often easier to simulate a complex system than to build the transition relation for it
- Pros: Easier to parallelize
- Cons: Answers may be wrong
 - But error probability can be bounded
- Cons: Simulation is incomplete

Statistical Model Checking

Key idea

- System behavior w.r.t. a (fixed) property Φ can be modeled by a Bernoulli random variable of parameter p:
 - System satisfies \$\varPhi\$ with (unknown) probability \$p\$
- Question: What is p?

- Draw a sample of system simulations and use:
 - Statistical estimation: returns "p in interval (a,b)" with high probability

Bounded Linear Temporal Logic

- Bounded Linear Temporal Logic (BLTL): Extension of LTL with time bounds on temporal operators.
- Let $\sigma = (s_0, t_0), (s_1, t_1), \dots$ be an execution of the model
 - along states s_0, s_1, \ldots
 - the system stays in state *s_i* for time *t_i*
 - divergence of time: Σ_i t_i diverges (i.e., non-zeno)
- σ^i : Execution trace starting at state *i*.
- A model for simulation traces (e.g. Stateflow/Simulink)

Semantics of BLTL

The semantics of BLTL for a trace σ^k :

- $\sigma^k \models ap$ iff atomic proposition ap true in state s_k
- $\sigma^k \models \Phi_1 \lor \Phi_2$ iff $\sigma^k \models \Phi_1$ or $\sigma^k \models \Phi_2$
- $\sigma^k \models \neg \phi$ iff $\sigma^k \models \phi$ does not hold
- $\sigma^k \models \Phi_1 \ \mathcal{U}^t \ \Phi_2$ iff there exists natural *i* such that
 - 1) $\sigma^{k+i} \models \Phi_2$
 - 2) $\Sigma_{j < i} t_{k+j} \leq t$
 - 3) for each $0 \le j < i, \sigma^{k+j} \models \Phi_1$

"within time t, Φ_2 will be true and Φ_1 will hold until then"

• In particular, $F^{t} \Phi = true \mathcal{U}^{t} \Phi$, $G^{t} \Phi = \neg F^{t} \neg \Phi$

Semantics of BLTL (cont'd)

- Simulation traces are finite: is $\sigma \models \phi$ well defined?
- <u>Definition</u>: The time bound of Φ :
 - #(ap) = 0
 - $#(\neg \Phi) = #(\Phi)$
 - $#(\Phi_1 \lor \Phi_2) = \max(\#(\Phi_1), \#(\Phi_2))$
 - $#(\Phi_1 \ \mathcal{U}^t \ \Phi_2) = t + \max(\#(\Phi_1), \#(\Phi_2))$
- Lemma: "Bounded simulations suffice"

Let Φ be a BLTL property, and $k \ge 0$. For any two infinite traces ρ , σ such that ρ^k and σ^k "equal up to time #(Φ)" we have

$$\rho^{k} \models \Phi \quad iff \quad \sigma^{k} \models \Phi$$

Bayesian Statistics

Three ingredients:

- 1. Prior distribution
 - Models our initial (a priori) uncertainty/belief about parameters (what is P(θ)?)

2. Likelihood function

 Describes the distribution of data (*e.g.*, a sequence of heads/tails), given a specific parameter value

3. Bayes Theorem

 Revises uncertainty upon experimental data - compute P(θ | data)

Sequential Bayesian Statistical MC

- Suppose \mathcal{M} satisfies ϕ with (unknown) probability p
 - *p* is given by a random variable (defined on [0,1]) with density *g*
 - g represents the prior belief that ${\cal M}$ satisfies ϕ
- Generate independent and identically distributed (iid) sample (simulation) traces.
- x_i : the *i*th sample trace σ satisfies ϕ
 - $x_i = 1$ iff $\sigma_i \models \phi$
 - $x_i = 0$ iff $\sigma_i \not\models \phi$
- Then, x_i will be a Bernoulli trial with conditional density (likelihood function)

$$f(x_i|u) = u^{x_i}(1 - u)^{1-x_i}$$

Beta Prior

• Prior *g* is Beta of parameters $\alpha > 0$, $\beta > 0$

$$\forall u \in [0,1] \quad g(u,\alpha,\beta) = \frac{1}{B(\alpha,\beta)} u^{\alpha-1} (1-u)^{\beta-1}$$

$$B(\alpha,\beta) = \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$$

■ $F_{(\cdot,\cdot)}(\cdot)$ is the Beta distribution function (i.e., Prob(X ≤ u))

$$F_{(\alpha,\beta)}(u) = \int_0^u g(t,\alpha,\beta) dt$$

Bayesian Interval Estimation - I

- Estimating the (unknown) probability p that "system $\models \Phi$ "
- Recall: system is modeled as a Bernoulli of parameter p
- <u>Bayes' Theorem</u> (for conditional iid Bernoulli samples)

$$f(u \mid x_1, \dots, x_n) = \frac{f(x_1 \mid u) \cdots f(x_n \mid u)g(u)}{\int_0^1 f(x_1 \mid v) \cdots f(x_n \mid v)g(v) \, dv}$$

- We thus have the posterior distribution
- So we can use the mean of the posterior to estimate p
 - mean is a posterior Bayes estimator for p (it minimizes the integrated risk over the parameter space, under a quadratic loss)

Bayesian Interval Estimation - II

- By integrating the posterior we get Bayesian intervals for p
- Fix a coverage $\frac{1}{2} < c < 1$. Any interval (t_0, t_1) such that

$$\int_{t_0}^{t_1} f(u \mid x_1, \dots, x_n) \, du = c$$

is called a 100c percent Bayesian Interval Estimate of p

- An optimal interval minimizes $t_1 t_0$: difficult in general
- Our approach:
 - fix a half-interval width δ
 - Continue sampling until the posterior probability of an interval of width 2δ containing the posterior mean exceeds coverage c

Bayesian Interval Estimation - III

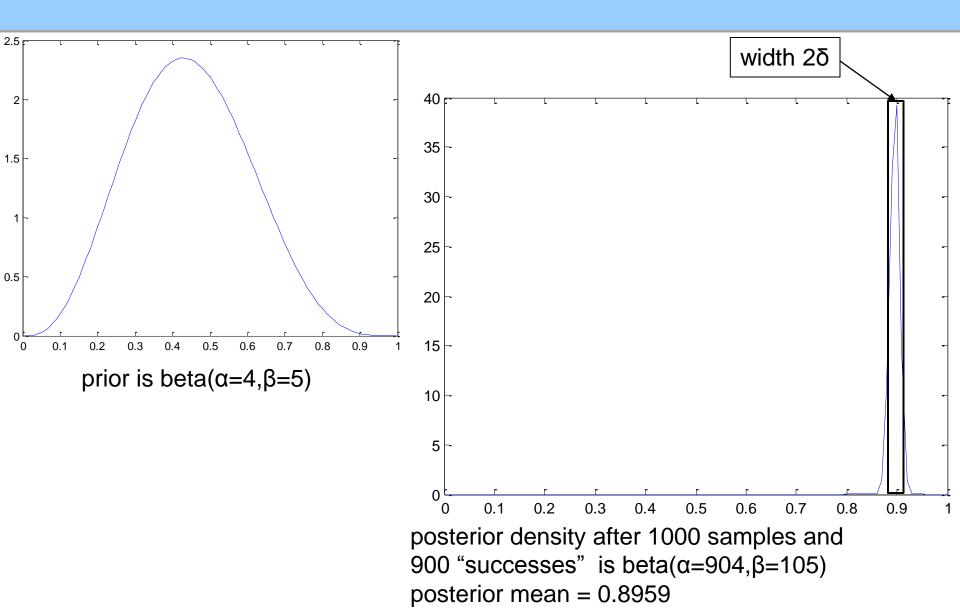
- Computing the posterior probability of an interval is easy
- Suppose *n* Bernoulli samples (with *x*≤*n* successes) and prior Beta(*α*,*β*)

$$P(t_0$$

$$= F_{(x+\alpha,n-x+\beta)}(t_1) - F_{(x+\alpha,n-x+\beta)}(t_0)$$

Efficient numerical implementations (Matlab, GSL, etc)

Bayesian Interval Estimation - IV



Bayesian Interval Estimation - V

<u>Require</u>: BLTL property Φ , interval-width δ , coverage c, **prior** beta parameters α,β *{number of traces drawn so far}* n := 0x := 0*{number of traces satisfying so far}* repeat $\sigma :=$ draw a sample trace of the system (iid) n := n + 1if $\sigma \models \phi$ then x := x + 1endif mean = $(x+\alpha)/(n+\alpha+\beta)$ $(t_0, t_1) = (\text{mean}-\delta, \text{mean}+\delta)$ $I := Posterior Probability (t_0, t_1, n, x, \alpha, \beta)$ until (I > c)**return** (t_0, t_1) , mean

Bayesian Interval Estimation - VI

- Recall the algorithm outputs the interval (t_0, t_1)
- Define the null hypothesis

 $H_0: t_0$

<u>Theorem</u> (Error bound). When the Bayesian estimation algorithm (using coverage $\frac{1}{2} < c < 1$) stops – we have

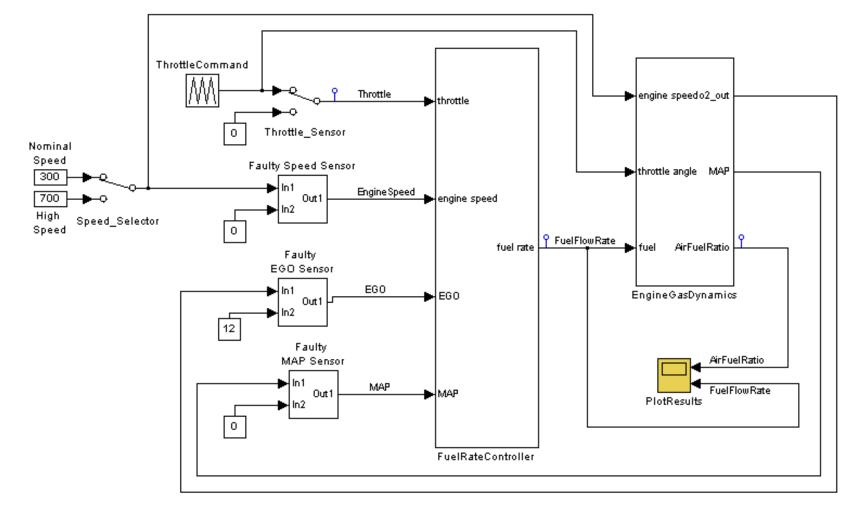
Prob ("accept H_0 " | H_1) $\leq (1/c - 1)\pi_0/(1 - \pi_0)$ Prob ("reject H_0 " | H_0) $\leq (1/c - 1)\pi_0/(1 - \pi_0)$

 π_0 is the prior probability of H_0

Zuliani, Platzer, Clarke. HSCC 2010

Example: Fuel Control System

The Stateflow/Simulink model



Fuel Control System

- Ratio between air mass flow rate and fuel mass flow rate
 - Stoichiometric ratio is 14.6
- Senses amount of oxygen in exhaust gas, pressure, engine speed and throttle to compute correct fuel rate.
 - Single sensor faults are compensated by switching to a higher oxygen content mixture
 - Multiple sensor faults force engine shutdown
- Probabilistic behavior because of random faults
 - In the EGO (oxygen), pressure and speed sensors
 - Faults modeled by three independent Poisson processes
 - We did not change the speed or throttle inputs

Verification

We want to estimate the probability that

 \mathcal{M} , FaultRate $\models (\neg F^{100} G^1(FuelFlowRate = 0))$

- "It is not the case that within 100 seconds, FuelFlowRate is zero for 1 second"
- We use various values of FaultRate for each of the three sensors in the model
- Uniform prior

Verification

- Half-width δ =.01
- Several values of coverage probability c
- Posterior mean: add/subtract δ to get Bayesian interval

		Interval coverage c			
		.9	.95	.99	.999
	[3 7 8]	.3603	.3559	.3558	.3563
Fault	[10 8 9]	.8534	.8518	.8528	.8534
rates	[20 10 20]	.9764	.9784	.9840	.9779
	[30 30 30]	.9913	.9933	.9956	.9971

Verification

- Number of samples
- Comparison with Chernoff-Hoeffding bound

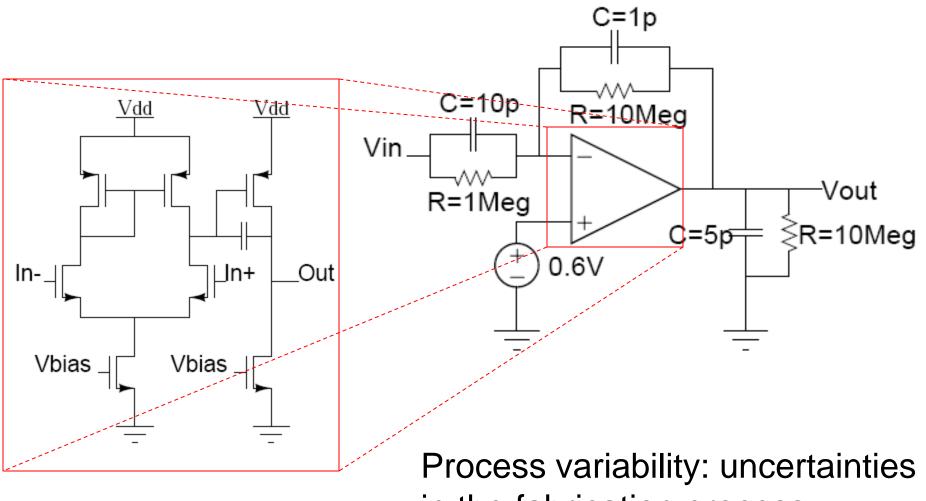
$$\Pr(|X - p| \ge \delta) \le exp(-2n\delta^2)$$

where $X = 1/n \Sigma_i X_i$, $E[X_i]=p$

about 17hrs on 2.4GHz Pentium 4

		Interval coverage c			
		.9	.95	.99	.999
	[3 7 8]	6,234	8,802	15,205	24,830 ←
Fault	[10 8 9]	3,381	4,844	8,331	13,569
rates	[20 10 20]	592	786	1,121	2,583
	[30 30 30]	113	148	227	341
Chernoff bound		11,513	14,979	23,026	34,539

Example: OP Amplifier



in the fabrication process

OP amp: BLTL Specifications

- Properties are measured directly from simulation traces
- Predicates over simulation traces
 - e.g. Swing Range: Max(V_{out}) > 1.0V AND Min(V_{out}) < .2V
- Using BLTL specifications
 - In most cases, can be translated directly from definitions
 - e.g. Swing Range:
 - $F^{[100\mu s]}(V_{out} < .2)$ AND $F^{[100\mu s]}(V_{out} > 1.0)$
 - "within 100µs V_{out} will eventually be greater than 1V and smaller than .2V"
 - 100µs : end time of transient simulation
 - Note: unit in *bound* is only for readability

OP amp: BLTL Specifications

Specifications			BLTL Specifications			
1	Input Offset Voltage	< 1 mV	F ^[100µs] (V _{out} = .6) AND G ^[100µs] ((V _{out} = .6) → (V _{in+} − V _{in-} < .001))			
2	Output Swing Range	.2 V to 1.0 V	$F^{[100\mu s]}(V_{out} < .2) \text{ AND } F^{[100\mu s]}(V_{out} > 1.0)$			
3	Slew Rate	> 25 V/µSec				
	$\begin{split} & \textbf{G}^{\texttt{[100}\mu\texttt{s]}}(\;((\texttt{V}_{\texttt{out}}\texttt{>}1.0\;\texttt{AND}\;\texttt{V}_{\texttt{in}}\texttt{>}.65)\rightarrow\textbf{F}^{\texttt{[0.032}\mu\texttt{s]}}(\texttt{V}_{\texttt{out}}\texttt{<}.2))\;\texttt{AND}\\ & (\texttt{V}_{\texttt{out}}\texttt{<}.2\;\texttt{AND}\;\texttt{V}_{\texttt{in}}\texttt{<}.55)\rightarrow\textbf{F}^{\texttt{[0.032}\mu\texttt{s]}}(\texttt{V}_{\texttt{out}}\texttt{<}1.0)\;) \end{split}$					

More properties and experiments in our ASP-DAC 2011 paper

Work in Progress: Rare events

- *p* is <u>small</u> (say 10⁻⁹)
- A 99% (approximate) confidence interval of relative accuracy δ needs about

 $(1-p)/p\delta^2$ samples

- Examples:
 - $p = 10^{-9}$ and $\delta = 10^{-2}$ (ie, 1% accuracy) we need about 10^{13} samples!!
 - Bayesian estimation requires about 6x10⁶ samples with p=10⁻⁴ and $\delta = 10^{-1}$

Importance Sampling

The fundamental Importance Sampling identity

$$p_t = E[I(X \ge t)]$$

= $\int I(x \ge t)f(x) dx$
= $\int I(x \ge t)\frac{f(x)}{f_*(x)}f_*(x) dx$
= $\int I(x \ge t)W(x)f_*(x) dx$
= $E_*[I(X \ge t)W(X)]$

Importance Sampling

• Estimate $p_t = E[X > t]$. A sample X_1, \dots, X_K iid as X

$$\hat{p_t} = \frac{1}{K} \sum_{i=1}^K I(X_i \ge t) = \frac{k_t}{K}, \qquad X_i \sim f$$

Define a biasing density f*

$$\hat{p_t} = \frac{1}{K} \sum_{i=1}^K I(X_i \ge t) W(X_i), \qquad X_i \sim f_*$$

where $W(x) = f(x)/f_*(x)$ is the likelihood ratio

Importance Sampling: Toy Example

Suppose X is Poisson with parameter λ

•
$$\operatorname{Prob}(X_t = k) = (1/k!)(\lambda t)^k \exp(-\lambda t)$$

- Then $\operatorname{Prob}(X_t \ge 1) = 1 \exp(-\lambda t)$
- Say t = 100 and $\lambda = 1/3 \times 10^{-11}$

•
$$p_t = \operatorname{Prob}(X_t \ge 1) \approx 3.333 \times 10^{-10}$$

Rare event!

Importance Sampling: Toy Example

- Define the biasing density a Poisson with parameter μ much larger than λ .
- The likelihood ratio is

 $W(k) = (\lambda t)^k (\mu t)^{-k} \exp(-\mu t) \exp(\lambda t) = (\lambda/\mu)^k \exp(t(\mu-\lambda))$

- Draw *N* samples $k_1 \dots k_N$ from the biasing density
- Importance sampling estimate is

•
$$e_t = 1/N \Sigma_i l(k_i >= 1) W(k_i)$$

Importance Sampling: Toy Example

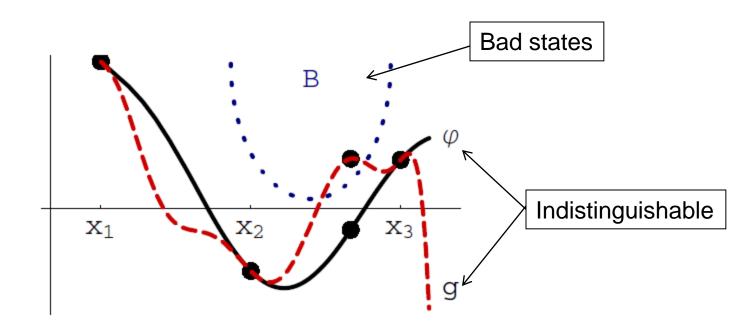
• With N = 100 samples and $\mu = 1/90$ we get an estimate

$$e_t = 3.2808 \times 10^{-10}$$

- Recall the "unbiased" system has $\lambda = 1/3 \times 10^{-11}$
- The (unknown) true probability is about 3.333 x 10⁻¹⁰
- Try standard MC estimation ...

Work In Progress

- Tackling the incompleteness of simulation
- <u>Theorem</u> (Undecidability of image computation)



Platzer and Clarke, HSCC 2007

Work In Progress

- Bad news, but ...
- <u>Theorem.</u> (Platzer and Clarke, 07) If $Prob(||\phi'||_{\infty} > b) \rightarrow 0$ when $b \rightarrow \infty$, then image computation can be performed with arbitrarily high probability by evaluating ϕ on sufficiently dense grid.
- Idea:
 - given a simulation trace, "compute the probability that we have missed a (bad) state between two sample points"
 - Bound the overall error probability *a priori* (combining bounds on $||\phi'||_{\infty}$ and the statistical test/estimation)

Thank You!