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Statistical Model Checking



Problem

Verification of Stochastic Systems

 Uncertainties in 

 the system environment, 

 modeling a fault, 

 biological signaling pathways,

 circuit fabrication (process variability)

 Transient property specification:

 “what is the probability that the system shuts down within 0.1 ms”?

 If Ф = “system shuts down within 0.1ms”

Prob(Ф) = ?



Equivalently

 A biased coin (Bernoulli random variable):

 Prob (Head) = p Prob (Tail) = 1-p

 p is unknown

 Question: What is p?

 A solution: flip the coin a number of times, collect the 

outcomes, and use a statistical estimation technique.



Motivation

 State Space Exploration infeasible for large systems

 Symbolic MC with OBDDs scales to 10300 states

 Scalability depends on the structure of the system

 Pros: Simulation is feasible for many more systems

 Often easier to simulate a complex system than to 

build the transition relation for it

 Pros: Easier to parallelize

 Cons: Answers may be wrong 

 But error probability can be bounded

 Cons: Simulation is incomplete



Key idea

 System behavior w.r.t. a (fixed) property Ф can be 

modeled by a Bernoulli random variable of parameter p:

 System satisfies Ф with (unknown) probability p

 Question: What is p?

 Draw a sample of system simulations and use:

 Statistical estimation: returns “p in interval (a,b)” with high 

probability

Statistical Model Checking



Bounded Linear Temporal Logic

 Bounded Linear Temporal Logic (BLTL): Extension of LTL 

with time bounds on temporal operators.

 Let σ = (s0, t0), (s1, t1), . . . be an execution of the model

 along states s0, s1, . . .

 the system stays in state si for time ti

 divergence of time: Σi ti diverges (i.e., non-zeno)

 σi: Execution trace starting at state i.

 A model for simulation traces (e.g. Stateflow/Simulink)



Semantics of BLTL

The semantics of BLTL for a trace σk:

 σk ap  iff atomic proposition ap true in state sk

 σk Φ1 v Φ2 iff  σk Φ1 or σk Φ2

 σk ¬Φ iff  σk Φ does not hold

 σk Φ1 Ut Φ2 iff  there exists natural i such that

1) σk+i Φ2 

2) Σj<i tk+j ≤ t

3) for each 0 ≤ j < i, σk+j Φ1

“within time t, Φ2 will be true and Φ1 will hold until then”

 In particular, Ft Φ = true Ut Φ, Gt Φ = ¬Ft ¬Φ



 Simulation traces are finite: is σ╞═ Φ well defined?

 Definition: The time bound of Φ:

 #(ap) = 0

 #(¬Φ) = #(Φ)

 #(Φ1 v Φ2) = max (#(Φ1), #(Φ2))

 #(Φ1 Ut Φ2) = t + max (#(Φ1), #(Φ2))

 Lemma: “Bounded simulations suffice”

Let Ф be a BLTL property, and k≥0. For any two infinite traces ρ, σ

such that ρk and σk “equal up to time #(Ф)” we have

ρk ╞═ Φ iff σk ╞═ Φ

Semantics of BLTL (cont’d)



Bayesian Statistics

Three ingredients:

1. Prior distribution

 Models our initial (a priori) uncertainty/belief about 

parameters (what is P(θ)?)

2. Likelihood function

 Describes the distribution of data (e.g., a sequence of 

heads/tails), given a specific parameter value

3. Bayes Theorem

 Revises uncertainty upon experimental data - compute 

P(θ | data) 



Sequential Bayesian Statistical MC

 Suppose      satisfies     with (unknown) probability p

 p is given by a random variable (defined on [0,1]) with density g

 g represents the prior belief that       satisfies    

 Generate independent and identically distributed (iid) 

sample (simulation) traces.

 xi: the ith sample trace    satisfies    

 xi = 1 iff 

 xi = 0 iff

 Then, xi will be a Bernoulli trial with conditional density 

(likelihood function)

f(xi|u) = uxi(1 − u)1-xi



 Prior g is Beta of parameters α>0, β>0

 F(∙,∙)(∙) is the Beta distribution function (i.e., Prob(X ≤ u))

Beta Prior



Bayesian Interval Estimation - I

 Estimating the (unknown) probability p that “system╞═ Ф”

 Recall: system is modeled as a Bernoulli of parameter p

 Bayes’ Theorem (for conditional iid Bernoulli samples)

 We thus have the posterior distribution

 So we can use the mean of the posterior to estimate p

 mean is a posterior Bayes estimator for p (it minimizes the 

integrated risk over the parameter space, under a quadratic loss)



 By integrating the posterior we get Bayesian intervals for p

 Fix a coverage ½ < c < 1. Any interval (t0, t1) such that

is called a 100c percent Bayesian Interval Estimate of p

 An optimal interval minimizes t1- t0: difficult in general

 Our approach: 

 fix a half-interval width δ

 Continue sampling until the posterior probability of an interval of 

width 2δ containing the posterior mean exceeds coverage c

Bayesian Interval Estimation - II



 Computing the posterior probability of an interval is easy

 Suppose n Bernoulli samples (with x≤n successes) and 

prior Beta(α,β)

 Efficient numerical implementations (Matlab, GSL, etc)

Bayesian Interval Estimation - III
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Bayesian Interval Estimation - IV
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prior is beta(α=4,β=5) 

posterior density after 1000 samples and 

900 “successes”  is beta(α=904,β=105)

posterior mean = 0.8959

width 2δ



Require: BLTL property Φ, interval-width δ, coverage c, 

prior beta parameters α,β

n := 0 {number of traces drawn so far}

x := 0 {number of traces satisfying  so far}

repeat

σ := draw a sample trace of the system (iid)

n := n + 1

if  σ Φ then

x := x + 1

endif

mean = (x+α)/(n+α+β)

(t0,t1) = (mean-δ, mean+δ)
I := PosteriorProbability (t0,t1,n,x,α,β)

until (I > c)

return (t0,t1), mean

Bayesian Interval Estimation - V



 Recall the algorithm outputs the interval (t0,t1)

 Define the null hypothesis

H0: t0 < p < t1

Theorem (Error bound). When the Bayesian estimation 

algorithm (using coverage ½< c < 1) stops – we have

Prob (“accept H0” | H1) ≤  (1/c -1)π0/(1-π0)

Prob (“reject H0” | H0)  ≤ (1/c -1)π0/(1-π0)

π0 is the prior probability of H0

Bayesian Interval Estimation - VI

Zuliani, Platzer, Clarke. HSCC 2010



Example: Fuel Control System

The Stateflow/Simulink model



Fuel Control System

 Ratio between air mass flow rate and fuel mass flow rate

 Stoichiometric ratio is 14.6

 Senses amount of oxygen in exhaust gas, pressure, 

engine speed and throttle to compute correct fuel rate.

 Single sensor faults are compensated by switching to a higher 

oxygen content mixture

 Multiple sensor faults force engine shutdown

 Probabilistic behavior because of random faults

 In the EGO (oxygen), pressure and speed sensors

 Faults modeled by three independent Poisson processes

 We did not change the speed or throttle inputs
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Verification

 We want to estimate the probability that 

M, FaultRate ╞═ (¬F100 G1(FuelFlowRate = 0))

 “It is not the case that within 100 seconds, 

FuelFlowRate is zero for 1 second”

 We use various values of FaultRate for each of the 

three sensors in the model

 Uniform prior
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Interval coverage c

.9 .95 .99 .999

Fault 

rates

[3  7  8] .3603 .3559 .3558 .3563

[10  8  9] .8534 .8518 .8528 .8534

[20 10  20] .9764 .9784 .9840 .9779

[30  30  30] .9913 .9933 .9956 .9971

 Half-width δ=.01

 Several values of coverage probability c

 Posterior mean: add/subtract δ to get Bayesian interval

Verification



Interval coverage c

.9 .95 .99 .999

Fault 

rates

[3  7  8] 6,234 8,802 15,205 24,830

[10  8  9] 3,381 4,844 8,331 13,569

[20 10  20] 592 786 1,121 2,583

[30  30  30] 113 148 227 341

Chernoff bound 11,513 14,979 23,026 34,539

 Number of samples 

 Comparison with Chernoff-Hoeffding bound

Pr (| X – p | ≥ δ) ≤ exp(-2nδ2)

where X = 1/n Σi Xi , E[Xi]=p

Verification

about 17hrs on 2.4GHz Pentium 4



Example: OP Amplifier

Process variability: uncertainties 

in the fabrication process



OP amp: BLTL Specifications

 Properties are measured directly from simulation traces

 Predicates over simulation traces

 e.g. Swing Range: Max(Vout) > 1.0V AND Min(Vout) < .2V

 Using BLTL specifications

 In most cases, can be translated directly from definitions

 e.g. Swing Range: 

 F[100μs](Vout < .2) AND F[100μs](Vout > 1.0)

 “within 100μs Vout will eventually be greater than 1V and smaller 

than .2V”

 100μs : end time of transient simulation

 Note: unit in bound is only for readability



Specifications BLTL Specifications

1 Input Offset Voltage < 1 mV F[100μs](Vout = .6) AND

G[100μs]((Vout = .6) → (|Vin+ − Vin−| < .001))

2 Output Swing Range .2 V to 1.0 V F[100μs](Vout < .2) AND F[100μs](Vout > 1.0)

3 Slew Rate > 25 V/μSec

G[100μs]( ((Vout > 1.0 AND Vin > .65) → F[0.032μs](Vout < .2)) AND 

(Vout < .2 AND Vin < .55) → F[0.032μs](Vout < 1.0) )

More properties and experiments in our 

ASP-DAC 2011 paper

OP amp: BLTL Specifications



 p is small (say 10-9)

 A 99% (approximate) confidence interval of relative 

accuracy δ needs about

(1-p)/pδ2 samples

 Examples: 

 p = 10-9 and δ = 10-2 (ie, 1% accuracy) we need 

about 1013 samples!!

 Bayesian estimation requires about 6x106 samples 

with p=10-4 and δ = 10-1

Work in Progress: Rare events



 The fundamental Importance Sampling identity

Importance Sampling



 Estimate pt=E[X>t]. A sample X1,… XK iid as X

 Define a biasing density f*

where W(x) = f(x)/f*(x) is the likelihood ratio

Importance Sampling
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Importance Sampling: Toy Example

 Suppose X is Poisson with parameter λ

 Prob(Xt = k) = (1/k!)(λt)k exp(-λt)

 Then Prob(Xt >= 1) = 1 - exp(-λt)

 Say t = 100 and λ = 1/3 x 10-11

 pt = Prob(Xt >= 1) ≈ 3.333 x 10-10

 Rare event!
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Importance Sampling: Toy Example

 Define the biasing density a Poisson with parameter μ

much larger than λ.

 The likelihood ratio is

W(k) = (λt)k (μt)-k exp(-μt) exp(λt) = (λ/μ)k exp(t(μ-λ))

 Draw N samples k1…kN from the biasing density

 Importance sampling estimate is 

 et = 1/N Σi I(ki >= 1) W(ki)
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Importance Sampling: Toy Example

 With N = 100 samples and μ = 1/90 we get an estimate

et = 3.2808 x 10-10

 Recall the “unbiased” system has λ = 1/3 x 10-11

 The (unknown) true probability is about 3.333 x 10-10

 Try standard MC estimation …



 Tackling the incompleteness of simulation

 Theorem (Undecidability of image computation) 

Work In Progress

Platzer and Clarke, HSCC 2007

Bad states

Indistinguishable



 Bad news, but …

 Theorem. (Platzer and Clarke, 07)                                     

If Prob(||φ’|| > b) → 0 when b → , then image 

computation can be performed with arbitrarily high 

probability by evaluating φ on sufficiently dense grid.

 Idea: 

 given a simulation trace, “compute the probability that we 

have missed a (bad) state between two sample points”

 Bound the overall error probability a priori (combining 

bounds on ||φ’|| and the statistical test/estimation)

Work In Progress



The End

Thank You!


