Logical Modeling Peripheral T Cell Differentiation

Jim Faeder

Department of Computational and Systems Biology

CMACS PI Meeting New York University October 29, 2010

Acknowledgements

• Faeder Lab

Department of Computational and Systems Biology

- Natasa Miskov-Zivanov
- John Sekar
- Leonard Harris
- Justin Hogg
- Jintao Liu
- Arshi Arora
- Jose Tapia

• Morel and Kane Labs

Department of Immunology

- Michael Turner
- Lawrence Kane
- Penelope Morel
- Funding:
 - NSF (Expeditions in Computing)
 - NIH (P01, Dendritic Cell Vaccines)

Peripheral T cell differentiation

• T cell subpopulation ratios are critical for numerous immune and auto-immune pathologies

Peripheral T cell differentiation

- T cell subpopulation ratios are critical for numerous immune and auto-immune pathologies
- Key target for immunomodulation therapy in cancer*

* Whiteside, T.L. "Inhibiting the Inhibitors...", Expert Opin. Biol. Ther. (2010), **10**, 1019.

Dominant Role of Antigen Dose in CD4⁺Foxp3⁺ Regulatory T Cell Induction and Expansion¹

Michael S. Turner, Lawrence P. Kane, and Penelope A. Morel²

Naïve T cells stimulated with low Ag doses produce a high percentage of regulatory cells, which falls off as dose is increased.

Dominant Role of Antigen Dose in CD4⁺Foxp3⁺ Regulatory T Cell Induction and Expansion¹

Michael S. Turner, Lawrence P. Kane, and Penelope A. Morel²

Inverse correlation between Foxp3+ Treg expansion and TCR signaling via Akt/mTOR/pS6.

Key Findings

- Treg induction is determined by Ag dose
- Mechanism is T cell intrinsic
 - Observed with both iDC and mDC
 - Observed with plate-bound anti-CD3/CD28
- Inverse correlation between mTOR activation at 18h and Foxp3+ Treg at 7 days
- No exogenous TGF-β

Modeling Goals

- Determine whether known mechanisms are sufficient to explain experimental observations.
- Suggest additional experiments to identify missing mechanisms and clarifying areas of uncertainty.
- Identify other *early markers* of the response.
- Incorporate signals through other receptors
 → predictive model.

Wiring diagram

Hu, Chylek, and Hlavacek, in preparation.

Object-oriented model of protein

21. PLC γ 1

Gene names: PLCG1, PLC1

Uniprot accession number: P19174

Molecule type definiton: PLCG1 (SH2_N, SH2_C, Y771~u~p, Y775~u~p, Y783~u~p)

Domain structure:

In the map of molecular interactions, PLC γ 1 is represented with the following graph:

Phospholipase C γ 1 is an enzyme essential for T cell activation (*127*). It cleaves phosphatidylinositol 4,5-bisphosphate, generating the second messengers diacyl glycerol (DAG) and inositol 1,4,5-trisphosphate (IP₃) (*128*). IP₃ binds to receptors on the endoplasmic reticulum, leading to release of Ca²⁺ (*129*). Itk phosphorylates PLC γ 1 on Y783, which is important for activation (*51*, *130*, *131*). PLC γ 1 binds to phosphorylated LAT (*111*). The

BIONETGEN / NFSIM

AD

a B

Reaction Volume

A b a

l D a

а

Reaction Rules

Molecule Types:

A-B binding

A Reactants

B Reactants

A-B unbinding

A-B Reactants

A-C binding

C Reactants

.

A Reactants

Hu, Chylek, and Hlavacek, in preparation.

Wiring diagram

Hu, Chylek, and Hlavacek, in preparation.

Wiring diagram α-lgG Fc Fab Fab Fab Issues CD2 PRS Models are very time-consuming to construct. Ν Limited knowledge about wiring. Lack of high-resolution data. • Lack of measured parameters. me RING (TKB) Cbp/PAG We did not "stand and fight" this time. b-a B Csk SH2 Wisdom or cowardice?

Hu, Chylek, and Hlavacek, in preparation.

A Simpler Approach Boolean Networks

- The state of an element in the signaling network can be described by a Boolean variable, expressing that it is:
 - Active or present (on or '1')
 - Inactive or absent (off or '0')

Boolean functions:

- Represent interactions between elements
- The state of an element is calculated from states of other elements
- The resulting network is a **Boolean network**
- Long history of applications to biology.

Logical Modeling Approach

- Generalization of Boolean variables may have more than 2 values.
- Systematic study of the **dynamics** of large systems:
 - Depends largely on the interconnection structure
- Does not require numerical parameters.
- Discrete networks provide information about:
 - Multi-stationarity
 - Stability
 - Oscillatory behavior
- Highly relevant for obtaining **qualitative** measures
 - Perturbations
 - Environment
 - Alternative wiring of the network

Boolean Network Modeling Example

Biological network

Proteins: p₁, p₂, p₃

Boolean Network Modeling Example

Proteins: p₁, p₂, p₃

Biochemical Examples

PIP3' = PI3K AND NOT PTEN

Note that PTEN overrides PI3K here.

Boolean Models Are Logic Circuits

Dynamics of a Boolean Model

Different Methods for Simulating Network Dynamics

Different Methods for Simulating Network Dynamics

Model Construction Process

Model Construction Process

The Model

~25 variables / 50 edges

The Model

~25 variables / 50 edges

Receptors:

T cell receptor (TCR) Co-stimulation through CD28 IL-2 receptor (IL-2R) TGFβ receptor (TGFβR)

Transcription factors: AP-1, NFAT, NFκB, SMAD3, STAT5

Genes:

IL-2, CD25, Foxp3

Other important elements: PTEN, PI3K, PIP3, PDK1, Akt, mTORC1, mTORC2, TSC1-TSC2, Rheb, S6K1, pS6

Influence sets

Element	Influence set	Element	Influence set
РІЗК	TCR, CD28, IL-2, IL-2R	AP-1	Fos, Jun
Akt	PDK1, mTORC2	ERK	Ras
mTORC1	Rheb, РКС-Ө	JNK	Ras
mTORC2	PI3K, S6K1	Fos	ERK
Foxp3	NFAT, AP-1, STAT5, Smad3	Jun	JNK
IL-2	NFAT, AP-1, NFкB, Foxp3	NFAT	Са
CD25	NFAT, AP-1, NFκB, STAT5, Foxp3	Ca	TCR
STAT5	IL-2, IL-2R	PDK1	PIP3
ΝϜκΒ	PKC-θ, Akt	TSC1-TSC2	Akt
Smad3	TGFβ, Akt, mTORC1	Rheb	TSC1-TSC2
PIP3	PI3K, PTEN	S6K1	mTORC1
Ras	TCR, CD28, IL-2, IL-2R	pS6	S6K1

Influence sets

Element	Influence set	Element	Influence set
РІЗК	TCR, CD28, IL-2, IL-2R	AP-1	Fos, Jun
Akt	PDK1, mTORC2	ERK	Ras
mTORC1	Rheb, РКС-Ө	JNK	Ras
mTORC2	PI3K, S6K1	Fos	ERK
Foxp3	NFAT, AP-1, STAT5, Smad3	Jun	JNK
IL-2	NFAT, AP-1, NFкB, Foxp3	NFAT	Са
CD25	NFAT, AP-1, NFκB, STAT5, Foxp3	Ca	TCR
STAT5	IL-2, IL-2R	PDK1	PIP3
ΝϜκΒ	PKC-θ, Akt	TSC1-TSC2	Akt
Smad3	TGFβ, Akt, mTORC1	Rheb	TSC1-TSC2
PIP3	PI3K, PTEN	S6K1	mTORC1
Ras	TCR, CD28, IL-2, IL-2R	pS6	S6K1

Logical modeling approach

Akt' = PDK1 and mTORC2

Influence sets

Element	Influence set	Element	Influence set
PI3K	TCR, CD28, IL-2, IL-2R	AP-1	Fos, Jun
Akt	PDK1, mTORC2	ERK	Ras
mTORC1	Rheb, РКС-Ө	JNK	Ras
mTORC2	PI3K, S6K1	Fos	ERK
Foxp3	NFAT, AP-1, STAT5, Smad3	Jun	JNK
IL-2	NFAT, AP-1, NFкB, Foxp3	NFAT	Са
CD25	NFAT, AP-1, NFκB, STAT5, Foxp3	Са	TCR
STAT5	IL-2, IL-2R	PDK1	PIP3
ΝϜκΒ	PKC-θ, Akt	TSC1-TSC2	Akt
Smad3	TGFβ, Akt, mTORC1	Rheb	TSC1-TSC2
PIP3	PI3K, PTEN	S6K1	mTORC1
Ras	TCR, CD28, IL-2, IL-2R	pS6	S6K1

Logical modeling approach

PIP3' = PI3K and not PTEN

- Number of levels for element values
 - TCR variable represents level of antigen stim.
 - No antigen (TCR_LOW = 0, TCR_HIGH = 0)
 - Low antigen dose (TCR_LOW = 1, TCR_HIGH = 0)
 - High antigen dose (TCR_LOW = 0, TCR_HIGH = 1)

TCR_LOW vs. TCR_HIGH

TCR_LOW not strong enough to overcome inhibition by PTEN.

- Choice between OR and AND:
 - Example:

mTORC1' = Rheb and (or?) PKC-θ

Choice between AND and OR:

Choice between AND and OR:

'and' rule means both are necessary for activation

Choice between AND and OR:

Choice between AND and OR:

'or' rule means either one is sufficient for activation

Simulation setup

- Simulation:
 - For given initial conditions, computes system trajectory
 - Usually 20-40 steps to reach steady state

- Scenarios (initial conditions and rules)
 - Simulated 300 times
 - Results show the percentage of being equal '1' across all runs

Model Validation

- Three main scenarios:
 - 1. High vs. Low antigen dose
 - 2. High antigen dose, then removed
 - 3. High antigen dose, then Akt or mTOR inhibitors added

Results are still preliminary.

Antigen Dose Dependence

Experimental data

Logical model results

Immunology, 2009, 183, 4895-4903.

Antigen Dose Dependence

Experimental data

Source: Turner *et al.*, The Journal of Immunology, 2009, 183, 4895-4903.

Logical model results

Foxp3 vs. pS6

Antigen Removal

Experimental data

Source: Sauer et al., PNAS 105:7797, 2008.

Remove TCR after 18 hrs

Antigen Removal

Experimental data

Logical model results

Source: Sauer et al., PNAS 105:7797, 2008.

Akt and mTOR inhibitors

Experimental data

Source: Sauer *et al.*, PNAS 105:7797, 2008.

Akt and mTOR inhibitors

Experimental data

Source: Sauer *et al.*, PNAS 105:7797, 2008.

Low dose steady state

High Antigen Trajectory

High Antigen Trajectory

Suppression of PTEN allows signal to reach Akt/mTOR axis.

Could PIP3 level be a good early predictor of cell fate?

High Antigen Trajectory

Notice that mTORC1 is activated at same time as STAT5.

If STAT5 activation happens first, Foxp3 expression can happen transiently before mTOR suppression occurs.

STAT5 vs. mTOR

Network Diagram

Circuit Diagram

STAT5 vs. mTOR

Network Diagram

Circuit Diagram

STAT5 vs. mTOR

Circuit Diagram

Role of CD25->STAT5->Foxp3

- This pathway drives *transient* Foxp3 expression at high Ag dose and *sustained* expression at low dose (in the model).
- Experiments suggest that both CD25 expression and pSTAT5 remain low in Foxp3⁻ cells.

Role of CD25->STAT5->Foxp3

- This pathway drives *transient* Foxp3 expression at high Ag dose and *sustained* expression at low dose (in the model).
- Experiments suggest that both CD25 expression and pSTAT5 remain low in Foxp3⁻ cells.
- Implies weak TCR stimulation may not be enough to drive CD25. *Could Foxp3 be driving CD25 instead?*

PTEN regulation

- PTEN blocks mTOR activation at low dose resulting in 100% Treg – not observed.
- Kinetics of PTEN / PIP3 could be very informative.
- Interplay with kinetics of CD25 / Foxp3 expression.
- PI3K activity increased by IL2 signaling and may partially overcome PTEN block.

Complex Interaction between mTORC1 and mTORC2

- mTORC2 activation still unclear:
 - Possible activation by PI3K
 or PIP3
 - –Negative feedback from mTORC1 through S6K1
- Oscillations for high antigen dose

Complex Interaction between mTORC1 and mTORC2

- mTORC2 activation still unclear:
 - Possible activation by PI3K
 or PIP3
 - –Negative feedback from mTORC1 through S6K1
- Oscillations for high antigen dose

Complex Interaction between mTORC1 and mTORC2

- mTORC2 activation still unclear:
 - Possible activation by PI3K or PIP3
 - –Negative feedback from mTORC1 through S6K1
- Oscillations for high antigen dose
- Solved by using three levels for PI3K.

mTOR role in Foxp3 expression

- Links between mTORC1 and mTORC2 and the Foxp3 expression are not well understood
 - Early mTORC1 signaling helps increase Foxp3 expression (through chromatin remodeling)
 - Prolonged mTORC1 signaling inhibits Foxp3
 - mTORC2 activation takes longer than mTORC1 activation
 - pS6 as a readout of mTORC1 activity decreases after 18 hours
 - Both mTORC1 and mTORC2 are necessary for Foxp3 inhibition

mTOR role in Foxp3 expression

- Links between mTORC1 and mTORC2 and the Foxp3 expression are not well understood
 - Early mTORC1 signaling helps increase Foxp3 expression (through chromatin remodeling)
 - Prolonged mTORC1 signaling inhibits Foxp3
 - mTORC2 activation takes longer than mTORC1 activation
 - pS6 as a readout of mTORC1 activity decreases after 18 hours
 - Both mTORC1 and mTORC2 are necessary for Foxp3 inhibition
- Further Experiments: correlation between levels of mTORC1 and mTORC2 and the level of Foxp3 expression

Conclusions

- Logical modeling approach allows collaborative model development.
- Preliminary model reproduces dependence of outcome on antigen dose and duration.
- Model focuses attention on several key elements
 - Relative kinetics of CD25 / Foxp3 expression
 - Role of differential PTEN regulation
 - Possible role of Smad3
 - Negative feedback between mTORC1 and mTORC2
 - mTORC1/2 regulation of Foxp3

Future modeling steps

- Experimenting with three instead of two levels
 - Increase in number of variables is not significant in terms of simulation runtime
- Modeling of population of cells
- Exploration of the system's sensitivity