

From Cardiac Cells to Genetic Regulatory Networks

Ezio Bartocci

SUNY Stony Brook

Joint work with

R. Grosu, G. Batt, F. Fenton, J. Glimm, C. Le Guernic, and S. A. Smolka

Overview

Background

- Cardiac Cells, Action Potential, Restitution
- Biological Switching
- Minimal Model
 - Resistor Model
 - Sigmoid Closure and Conductance Model
- Piecewise Multi Affine Minimal Model
 - Optimal Polygonal Approximation
 - Model Comparison
- Parameter Identification
 - RoverGene
- Conclusion

Background

Emergent Behavior in Heart Cells

Arrhythmia afflicts more than 3 million Americans alone

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External / Neighboring cells
- Cell's state

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External / Neighboring cells
- Cell's state

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External / Neighboring cells
- Cell's state

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External / Neighboring cells
- Cell's state

AP has nonlinear behavior!

Reaction diffusion system:

$$\frac{\partial \mathbf{u}}{\partial t} = R(\mathbf{u}) + \nabla(D\nabla \mathbf{u})$$

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External / Neighboring cells
- Cell's state

AP has nonlinear behavior!

Reaction diffusion system:

$$\frac{\partial \mathbf{u}}{\partial t} = R(\mathbf{u}) + \nabla(D\nabla \mathbf{u})$$
Behavior
In time

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External / Neighboring cells
- Cell's state

AP has nonlinear behavior!

• Reaction diffusion system:

$$\frac{\partial \mathbf{u}}{\partial t} = R(\mathbf{u}) + \nabla(D\nabla \mathbf{u})$$
Reaction

time

Membrane's AP depends on:

- Stimulus (voltage or current):
 - External / Neighboring cells
- Cell's state

AP has nonlinear behavior!

• Reaction diffusion system:

$$\frac{\partial \mathbf{u}}{\partial t} = R(\mathbf{u}) + \nabla (D\nabla \mathbf{u})$$

Frequency Response

Existing Models

- Detailed ionic models:
 - Luo and Rudi: 14 variables
 - Tusher, Noble² and Panfilov: 17 variables
 - Priebe and Beuckelman: 22 variables
 - Iyer, Mazhari and Winslow: 67 variables
- Approximate models:
 - Cornell: 3 or 4 variables
 - SUNYSB: 2 or 3 variable

Biological Switching

Biological Switching

Threshold-Based Switching Functions

• Arithmetic Generalization of Boolean predicates $u \leq \theta$:

- Step:	H⁺(u,θ,0,1),	H ⁻ (u,θ,0,1)	$= 1 - H^+(u, \theta, 0, 1)$
- Sigmoid:	S⁺(u,θ,k,0,1),	S⁻(u,θ,k,0,1)	$= 1 - S^+(u,\theta,k,0,1)$
- Ramp:	$R^{+}(u, \theta_{1}, \theta_{2}, 0, 1),$	$R^{-}(u, \theta_1, \theta_2, 0, 1)$	$= 1 - R^+(u, \theta_1, \theta_2, 0, 1)$

Boolean algebra generalizes to probability algebra:

 $\begin{array}{ll} \sim (u \leq \theta) : & H^{+}(u,\theta,0,1) = 1 - H^{+}(u,\theta,0,1) \\ (u \leq \theta_{1}) \& (v \leq \theta_{2}) : & H^{+}(u,\theta_{1},0,1) * H^{+}(v,\theta_{2},0,1) \\ (u \leq \theta_{1}) \mid (u \leq \theta_{2}) : & H^{+}(u,\theta_{1},0,1) + H^{+}(v,\theta_{2},0,1) - H^{+}(u,\theta_{1},0,1) * H^{+}(v,\theta_{2},0,1) \end{array}$

• Generalization: $H^{\pm}(u,\theta,u_m,u_M)$, $S^{\pm}(u,\theta,k,u_m,u_M)$, $R^{\pm}(u,\theta_1,\theta_2,u_m,u_M)$

 $S^{\pm}(u,\theta,k,u_m,u_M) = u_m + (u_M - u_m)S^+(u,k,\theta)$

Gene Regulatory Networks (GRN)

• GRNs have the following general form:

$$\dot{x}_{i} = \sum_{m=1}^{m_{i}} \prod_{n=1}^{n_{m}} a_{mn} s^{\pm}(x_{mn}, \theta_{mn}, k_{mn}, u_{mn}, v_{mn}) - b_{i} x_{i}$$

where:

- a_{mn} : are activation / inhibition constants
- b_i : are decay constants
- $s^{\pm}(..)$: are possibly complemented sigmoidal functions
- Note: steps and ramps are sigmoid approximations

Minimal Model

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \ (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \ ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \ u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \ (v_{\infty} - v) \ / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v \ / \tau_{v}^{+} \\ \mathbf{\&} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \mathbf{\&} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

$$\dot{u} = \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so})$$

$$\overset{\diamond}{\bullet} = -H^{+}(u, \theta_{v}, 0, 1) \quad (u - \theta_{v})(u_{u} - u)v / \tau_{fi}$$
voltage
$$-H^{+}(u, \theta_{w}, 0, 1) \quad ws / \tau_{si}$$

$$J_{so} = H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so}$$

$$\dot{v} = H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v / \tau_{v}^{+}$$

$$\overset{\diamond}{\bullet} = H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+}$$

$$\overset{\diamond}{\bullet} = (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s}$$

$$\dot{u} = \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so})$$

$$J_{fi} = \underbrace{H^+}_{\text{Diffusion}} (u - \theta_v)(u_u - u)v / \tau_{fi}$$

$$J_{si} = \underbrace{H^-}_{\text{Laplacia}} (u, \theta_w, 0, 1) (u - \theta_v)(u_u - u)v / \tau_{fi}$$

$$J_{so} = H^-(u, \theta_w, 0, 1) (u - \tau_o + H^+(u, \theta_w, 0, 1) / \tau_{so})$$

$$\dot{v} = H^-(u, \theta_v, 0, 1) (v_\infty - v) / \tau_v^- - H^+(u, \theta_v, 0, 1)v / \tau_v^+$$

$$\mathbf{\&} = H^-(u, \theta_w, 0, 1)(w_\infty - w) / \tau_w^- - H^+(u, \theta_w, 0, 1)w / \tau_w^+$$

$$\mathbf{\&} = (S^+(u, u_s, k_s, 0, 1) - s) / \tau_s$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 0) \quad (u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, Fast input \\ current \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \quad (\tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so}) \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v / \tau_{v}^{+} \\ v &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ &\& = (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

 $J_{fi} = -H(u - \theta_v)(u - \theta_v)(u_u - u)v / \tau$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \underbrace{(u - \theta_{so})(u - u)v}_{rfi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \underbrace{(u - \theta_{so})(u - u)v}_{rriv} \\ \tau_{so} &= H^{-}(u, \theta_{w}, 0, 1) \underbrace{(u - \theta_{so})(u - u)v}_{rriv} \\ \dot{v} &= H^{-}(u, \theta_{w}, 0, 1) \underbrace{(v_{\infty} - v)}_{rriv} \\ \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v / \tau_{v}^{+} \\ \dot{w} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \dot{w} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \quad (u - \theta_{v}) = -u v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} = u v / \tau_{fi} \\ Slow output \\ current \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} = v / \tau_{v} - H^{+}(u, \theta_{v}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1) v / \tau_{v}^{+} \\ v &= H^{-}(u, \theta_{w}, 0, 1) (w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1) w / \tau_{w}^{+} \\ & \& = (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \ (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \ ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \ u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \ (v_{\infty} - v) \ / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v \ / \tau_{v}^{+} \\ \mathbf{\&} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \mathbf{\&} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J + J) \\ \begin{array}{l} \text{Activation} \\ \text{Threshol} \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) & (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) & ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) & u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) & (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v / \tau_{v}^{+} \\ \mathbf{\&} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \mathbf{\&} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

 $J_{fi} = -H(u - \theta_v)(u - \theta_v)(u_u - u)v / u$

$$\dot{u} = \nabla (D\nabla u) - (J_{f_{v}} \underbrace{\text{Heaviside}}_{(\text{step})})$$

$$J_{f_{i}} = -H^{+}(u, \theta_{v}, 0, 1) \quad (u - \theta_{v})(u_{u} - u)v / \tau_{f_{i}}$$

$$J_{s_{i}} = -H^{+}(u, \theta_{w}, 0, 1) \quad ws / \tau_{s_{i}}$$

$$J_{so} = H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so}$$

$$\dot{v} = H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v / \tau_{v}^{+}$$

$$\& = H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+}$$

$$\& = (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s}$$

$$\dot{u} = \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so})$$

$$J_{fi} = -H^{+}(u, \theta_{v}, 0, 1) \quad (u - \theta_{v})(u_{u} - u)v / \tau_{fi}$$

$$J_{si} = -H^{+}(u, \theta_{w}, 0, 1) \quad ws / \tau_{si}$$

$$J_{so} = H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so}$$

$$\dot{v} = H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v / \tau_{v}^{+}$$

$$\& = H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+}$$

$$\& = (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s}$$

 $J_{fi} = -H(u - \theta_v)(u - \theta_v)(u_u - u)v / \tau$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \ (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \bullet \bullet \\ Iime Cst \\ Isi &= -H^{+}(u, \theta_{w}, 0, 1) \ ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \ u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \ (v_{\infty} - v) \ / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v \ / \tau_{v}^{+} \\ \mathbf{\&} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \mathbf{\&} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

 $J_{\hat{n}} = -H(u - \theta_{v})(u - \theta_{v})(u_{u} - u)v / \tau$

$$\dot{u} = \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so})$$

$$J_{fi} = -H^{+}(u, \theta_{v}, 0, 1) \quad (u - \theta_{v})(u_{u} - u)v / \tau_{fi}$$

$$J_{si} = -H^{+}(u, \theta_{w}, 0, 1) \quad ws / \tau_{si}$$

$$J_{so} = H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so}$$

$$\dot{v} = H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v / \tau_{v}^{+}$$

$$\& = H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+}$$

$$\& = (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + Slow Output \\ Gate \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \quad (u - O(u_{u} - v) \vee / \tau_{fi}) \\ J_{si} &= -H^{+}(u, \theta_{v}, 0, 1) \quad ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1) v / \tau_{v}^{+} \\ \dot{w} &= H^{-}(u, \theta_{w}, 0, 1) (w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1) w / \tau_{w}^{+} \\ \dot{w} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \quad (u - \theta_{v})(u_{u} - \text{Piecewise}) \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \quad ws \ / \ \tau_{si} \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \quad u \ / \ \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) \ / \ \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \quad (v_{\infty} - v) \ / \ \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v \ / \ \tau_{v}^{+} \\ \star &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) \ / \ \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w \ / \ \tau_{w}^{+} \\ &\& = (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) \ / \ \tau_{s} \end{split}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \ (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \ ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \ u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \ (v_{\infty} - v) \ / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v \ / \tau_{v}^{+} \\ \mathbf{\&} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \mathbf{\&} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \ (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \ ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \ u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \ (v_{\infty} - v) \ / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v \ / \tau_{v}^{+} \\ \mathbf{\&} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \mathbf{\&} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \ (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \ ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \ u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \ (v_{\infty} - v) \ / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1) \\ \mathbf{k} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w} \\ \mathbf{k} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

Cornell's Minimal Resistor Model

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \quad (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \quad ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{w}, 0, 1) \quad u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{w}, 0, 1) - v / \tau_{v}^{-} - H^{+}(u, \theta_{w}, 0, 1)v / \tau_{v}^{+} \\ \dot{w} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \circ \end{split}$$

 $J_{\eta} = -H(u - \theta_{\nu})(u - \theta_{\nu})(u_{\mu} - u)v / \tau$

Cornell's Minimal Resistor Model

$$\begin{split} \dot{u} &= \nabla (D\nabla u) - (J_{fi} + J_{si} + J_{so}) \\ J_{fi} &= -H^{+}(u, \theta_{v}, 0, 1) \ (u - \theta_{v})(u_{u} - u)v / \tau_{fi} \\ J_{si} &= -H^{+}(u, \theta_{w}, 0, 1) \ ws / \tau_{si} \\ J_{so} &= H^{-}(u, \theta_{w}, 0, 1) \ u / \tau_{o} + H^{+}(u, \theta_{w}, 0, 1) / \tau_{so} \\ \dot{v} &= H^{-}(u, \theta_{v}, 0, 1) \ (v_{\infty} - v) \ / \tau_{v}^{-} - H^{+}(u, \theta_{v}, 0, 1)v \ / \tau_{v}^{+} \\ \mathbf{\&} &= H^{-}(u, \theta_{w}, 0, 1)(w_{\infty} - w) / \tau_{w}^{-} - H^{+}(u, \theta_{w}, 0, 1)w / \tau_{w}^{+} \\ \mathbf{\&} &= (S^{+}(u, u_{s}, k_{s}, 0, 1) - s) / \tau_{s} \end{split}$$

Voltage-controlled resistances

$$\begin{aligned} \tau_{v}^{-} &= H^{+}(u, \theta_{v}^{-}, \tau_{v1}^{-}, \tau_{v2}^{-}) \\ \tau_{o} &= H^{-}(u, \theta_{v}^{-}, \tau_{o2}, \tau_{o1}) \\ \tau_{s} &= H^{+}(u, \theta_{w}, \tau_{s1}, \tau_{s2}) \\ \tau_{w}^{-} &= S^{+}(u, k_{w}^{-}, u_{w}^{-}, \tau_{w1}^{-}, \tau_{w2}^{-}) \\ \tau_{so} &= S^{+}(u, k_{so}^{-}, u_{so}^{-}, \tau_{so1}^{-}, \tau_{so2}^{-}) \end{aligned}$$

Voltage-controlled resistances

$$\begin{aligned} \tau_{v}^{-} &= H^{+}(u, \theta_{v}^{-}, \tau_{v1}^{-}, \tau_{v2}^{-}) \\ \tau_{o} &= H^{-}(u, \theta_{v}^{-}, \tau_{o2}, \tau_{o1}) \\ \tau_{s} &= H^{+}(u, \theta_{w}, \tau_{s1}, \tau_{s2}) \\ \tau_{w}^{-} &= S^{+}(u, k_{w}^{-}, u_{w}^{-}, \tau_{w1}^{-}, \tau_{w2}^{-}) \\ \tau_{so} &= S^{+}(u, k_{so}^{-}, u_{so}^{-}, \tau_{so1}^{-}, \tau_{so2}^{-}) \end{aligned}$$

Voltage-controlled resistances

Cornell's Minimal Resistance Model

Cornell's Minimal Resistance Model

Cornell's Minimal Resistance Model 1.4 1.2 0.8 $\theta_o \leq u < \theta_w$ 0.6 $u = \nabla (D \nabla u) - u / \tau_{o2}$ $\mathbf{k} = -v / \tau_{v2}^{-}$ $w = (w_{\infty}^* - w) / \tau_{w1}^$ $u < \theta_v = 0.3$ $u \geq \theta_v$ $\mathbf{\&} = \left(S(2k_s(u-u_s)) - s \right) / \tau_s$ $u < \theta_{o}$ $u \geq \theta_w$ $u < \theta_w = 0.13$ $u = \nabla (D \nabla u) - u / \tau_{o1}$ $u < \theta_o = \theta_v^- = 0.006$ $u \geq \theta_o$ $\mathbf{k} = (1 - v) / \tau_{v1}^{-}$ 10000 12000 14000 16000 $w = (1 - u / \tau_{w\infty} - w) / \tau_{w}^{-}$ $\mathbf{\&} = \left(S(2k_s(u-u_s)) - s \right) / \tau_s$

Cornell's Minimal Resistance Model 1.4 1.2 $\theta_{u} \leq u < \theta_{v}$ 0.8 $u = \nabla (D \nabla u) + w s / \tau_{si} - 1 / \tau_{so}$ $\theta_o \leq u < \theta_w$ $\mathbf{k} = -v / \tau_{v^2}$ 0.6 $w = -w / \tau_w^+$ $u = \nabla (D \nabla u) - u / \tau_{\alpha^2}$ $\mathbf{\&} = (S(2k_{s}(u-u_{s}))-s) / \tau_{s2}$ $\mathbf{k} = -v / \tau_{v^2}$ $w = (w_{\infty}^* - w) / \tau_{w1}^$ $u < \theta_v = 0.3$ $u \geq \theta_v$ $\mathbf{\&} = \left(S(2k_s(u-u_s)) - s \right) / \tau_s$ $u < \theta_{o}$ $u < \theta_w = 0.13$ $u \geq \theta_w$ $u = \nabla (D \nabla u) - u / \tau_{o1}$ $u < \theta_o = \theta_v^- = 0.006$ $u \geq \theta_o$ $\mathbf{k} = (1 - v) / \tau_{v1}^{-}$ 14000 16000 10000 12000 $u = (1 - u / \tau_{w\infty} - w) / \tau_{w}^{-}$ $\mathbf{\&} = \left(S(2k_s(u-u_s)) - s \right) / \tau_s$

Cornell's Minimal Resistance Model

Sigmoid Closure

For ab > 0, scaled sigmoids are closed under multiplicative inverses (division):

$$S^{+}(u,k,\theta,a,b)^{-1} = S^{-}(u,k,\theta + \ln(a / b) / 2k,b^{-},a^{-})$$

Sigmoid Closure

For ab > 0, scaled sigmoids are closed under multiplicative inverses (division):

$$S^{+}(u,k,\theta,a,b)^{-1} = S^{-}(u,k,\theta + \ln(a / b) / 2k,b^{-},a^{-})$$

Proof

$$S^{+}(u,k,\theta,a,b)^{-1} = \frac{1}{a + \frac{b-a}{1+e^{-2k(u-\theta)}}} = \frac{1+e^{-2k(u-\theta)}}{b+ae^{-2k(u-\theta)}} =$$
$$= \frac{1}{a} \times \frac{a-b+b+ae^{-2k(u-\theta)}}{b+ae^{-2k(u-\theta)}} = \frac{1}{a} - \frac{\frac{1}{a} - \frac{1}{b}}{1+\frac{a}{b}e^{-2k(u-\theta)}} =$$
$$= \frac{1}{a} - \frac{\frac{1}{a} - \frac{1}{b}}{1+e^{-2k(u-\theta)}} = S^{-}(u,k,\theta + \frac{\ln\frac{a}{b}}{2k},\frac{1}{b},\frac{1}{a})$$

Sigmoid Closure

For ab > 0, scaled sigmoids are closed under multiplicative inverses (division):

$$S^{+}(u,k,\theta,a,b)^{-1} = S^{-}(u,k,\theta + \ln(a/b)/2k,b^{-},a^{-})$$

Resistances vs Conductances

Removing Divisions using Sigmoid Closure

Piecewise Multi Affine Model

Our goals

- Derive a Piecewise Multi Affine model:
 - This should facilitate analysis
 - We want to improve the computational efficiency
- Identify the parameters based on:
 - Data generated by a detailed ionic model
 - Experimental, in-vivo data

Our goals

- Derive a Piecewise Multi Affine model:
 - This should facilitate analysis
 - We want to improve the computational efficiency
- Identify the parameters based on:
 - Data generated by a detailed ionic model
 - Experimental, in-vivo data

Problem to solve:

Given a nonlinear curve and the desired number of the segments return the optimal polygonal approximation:

Example:

Problem to solve:

Given a nonlinear curve and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu curve with 3 segments ?

Problem to solve:

Given a nonlinear curve and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu curve with 3 segments?

Problem to solve:

Given a nonlinear curve and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu curve with 3 segments?

Problem to solve:

Given a nonlinear curve and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu curve with 3 segments?

Problem to solve:

Given a nonlinear curve and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu curve with 3 segments?

Problem to solve:

Given a nonlinear curve and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu curve with 3 segments?

Our problem:

Given a set of nonlinear curves and the desired number of the segments return the optimal polygonal approximation:

Our problem:

Given a set of nonlinear curves and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu and the red curve with 5 segments ?

Our problem:

Given a set of nonlinear curves and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu and the red curve with 5 segments ?

But combining the two we obtain 8 segments and not 5 segments

Our problem:

Given a set of nonlinear curves and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu and the red curve with 5 segments ?

But combining the two we obtain 8 segments and not 5 segments

Our solution: We modify the optimal polygonal approximation algorithm to perform the linearization on a set of curves trying to minimize the maximum error.

Our problem:

Given a set of nonlinear curves and the desired number of the segments return the optimal polygonal approximation:

Example: What is the optimal polygonal approximation of the blu and the red curve with 5 segments ?

Our solution: We modify the optimal polygonal approximation algorithm to perform the linearization on a set of curves trying to minimize the maximum error.

Deriving the Piecewise Multi Affine Model

Deriving the Piecewise Multi Affine Model

$$\begin{array}{l} (\theta_{v} < u \le u_{u}) \\ \dot{u} = \nabla(D\nabla u) + (b^{j\beta} + \sum_{i=12}^{i=26} a_{i}^{j\beta} R^{*}(u,\theta_{i},\theta_{i+1})) v \ g_{ji} + ws \ g_{ui} - (b^{uv} + \sum_{i=12}^{i=26} a_{i}^{uv} R^{*}(u,\theta_{i},\theta_{i+1})) \\ \dot{v} = -v \ g_{v}^{+} \\ \dot{w} = -w \ g_{w}^{+} \\ \dot{s} = (b^{*} + \sum_{i=12}^{i=27} a^{i} R^{*}(u,\theta_{i},\theta_{i+1})) \ g_{s2} - s \ g_{s2} \\ \hline \\ u < \theta_{v} \\ u \ge \theta_{v} \\ u \ge \theta_{v} \\ \dot{u} = \nabla(D\nabla u) + ws \ g_{ui} - (b^{uv} + \sum_{i=8}^{i=2} a^{iw} R^{*}(u,\theta_{i},\theta_{i+1})) \\ \dot{v} = -v \ g_{v}^{-2} \\ \dot{w} = -w \ g_{w}^{-2} \\ \dot{s} = (b^{*} + \sum_{i=2}^{i=2} a^{i} R^{*}(u,\theta_{i},\theta_{i+1})) \ g_{s2} - s \ g_{s2} \\ \hline \\ \theta_{v}^{-} \le u < \theta_{v} \\ \dot{u} \ge \theta_{v} \\ \dot{w} = -v \ g_{v}^{-2} \\ \dot{w} = -v \ g_{v}^{-2} \\ \dot{w} = -v \ g_{v}^{-2} \\ \dot{w} = (w^{-} - w) \ (b^{w} + \sum_{i=2}^{i=8} a^{w} R^{*}(u,\theta_{i},\theta_{i+1})) \\ \dot{s} = (b^{*} + \sum_{i=2}^{i=8} a^{s} R^{*}(u,\theta_{i},\theta_{i+1})) \ g_{s1} - s \ g_{s1} \\ \hline \\ \dot{w} = (b^{w1} + \sum_{i=1}^{i=2} a^{w} R^{*}(u,\theta_{i},\theta_{i+1})) - w \ (b^{w2} + \sum_{i=1}^{i=2} a^{w2} R^{*}(u,\theta_{i},\theta_{i+1})) \\ \dot{s} = (b^{*} + \sum_{i=1}^{i=2} a^{s} R^{*}(u,\theta_{i},\theta_{i+1})) \ g_{s1} - s \ g_{s1} \\ \hline \end{array}$$

1D Cable Comparison

2D Comparison

Parameter Identification

Ta

Genetic Regulatory Networks

 $\theta_a^1, \theta_a^2, \theta_b^1, \theta_b^2$

$$\dot{x}_a = \kappa_a r^-(x_b, \theta_b^1, \theta_b^2) - \gamma_a x_a$$
$$\dot{x}_b = \kappa_b r^-(x_a, \theta_a^1, \theta_a^2) - \gamma_b x_b$$

G. Batt, C. Belta and R. Weiss (2008) Temporal logic analysis of gene networks under parameter uncertainty

Find parameters such that network is bistable

$$p = (\kappa_a, \kappa_b) \in \mathcal{P} = [0, 40] \times [0, 20] \quad \begin{array}{l} \gamma_a = 1, \ \gamma_b = 2, \ \theta_a^1 = 8\\ \theta_b^1 = 8, \ \theta_a^2 = \theta_b^2 = 12 \end{array}$$

cross-inhibition network $r^{-}(x_i, \theta_i, \theta'_i)$ 1 x: protein concentration threshold concentration θ'_i θ_i $k_a, k_b, \gamma_a, \gamma_b$: rate parameters⁰ x_i θ_h^2 θ_h^1 , θ^1_a θ_a^2

Genetic Regulatory Networks

• Partition of the state space: rectangles $R \in \mathcal{R}$

- ***** Differential equation models $\dot{x} = f(x, p)$, with
 - f is **piecewise-multiaffine** (PMA) function of state **variables** x

• *f* is affine function of rate parameters $p = k_a, k_b$ (multiaffine functions: products of different state variables allowed)

Specifications of dynamical properties

Dynamical properties expressed in temporal logic (LTL)

- set of atomic proposition Π : $x_i < \lambda_i, x_i > \lambda_i$
- usual logical operators $\neg \phi$, $\phi_1 \land \phi_2$, $\phi_1 \lor \phi_2$, $\phi_1 \rightarrow \phi_2$, ...
- temporal operators $X \phi_1 F \phi_2, G \phi_1 U \phi_2, \dots$

How to define that the system satisfies an LTL property ?

♦ Discrete transition system, $T_{\mathcal{R}}(p) = (\mathcal{R}, \rightarrow_{\mathcal{R}, p}, \models_{\mathcal{R}})$, where $f(v^3)$ • \mathcal{R} finite set of rectangles $\forall x \in R, f(x) \in \text{hull}(\{f(v) \mid v \in \mathcal{V}_R\})$ • $\rightarrow_{\mathcal{R},p}$ quotient transition relation ⊨_R quotient satisfaction relation R x_b R_{13} (- R13 - - θ_{i}^{2} R22 . R_{12} (R_{22} R_{21} $- R_{31}$ 8 10 12 14 16 R_{11} (R_{31} R_{21} $R_{11} \rightarrow_{\mathcal{R},p} R_{21}, R_{21} \rightarrow_{\mathcal{R},p} R_{31}$ $R_{11} \models_{\mathcal{R}} x_a < \theta_a^1, \ R_{11} \models_{\mathcal{R}} x_b < \theta_b^1$ $R_{11} \rightarrow_{\mathcal{R},p} R_{11},$

Embedding transition system

- ♦ PMA system, $\Sigma = (f, \Pi)$ associated with embedding transition system, $T_{\mathcal{X}}(p) = (\mathcal{X}_{\mathcal{R}}, \rightarrow_{\mathcal{X}, p}, \models_{\mathcal{X}})$, where
 - X_R continuous state space
 - $\rightarrow \chi_{,p}$ transition relation
 - $\models_{\mathcal{X}}$ satisfaction relation

$$\begin{aligned} x^{1} \to_{\mathcal{X},p} x^{2}, & x^{1} \to_{\mathcal{X},p} x^{3}, \\ x^{2} \to_{\mathcal{X},p} x^{3}, & x^{3} \to_{\mathcal{X},p} x^{4} \end{aligned}$$
$$\begin{aligned} x^{1} \models_{\mathcal{X}} x_{a} < \theta_{a}^{1}, & x^{1} \models_{\mathcal{X}} x_{b} < \theta_{b}^{1}, \\ x^{4} \models_{\mathcal{X}} x_{a} < \theta_{a}^{1}, & x^{4} \models_{\mathcal{X}} x_{b} > \theta_{b}^{1} \end{aligned}$$

Iterative exploration of parameter space

Parameter Idenfication for APD

Encoding a Property on the APD

Introducing a new state variable for the stimulus:

Alternans

Future Works

- Performing experiments with Rovergene
- Encoding more sophisticated properties
- Discriminate healthy/unhealthy tissues using model checking

Thanks for the attention


```
function [e,a,b,xb] = optimalLinearApproximation(x,y,S)
Input:
```

```
x,y: Curves given as an x-points vector and a vector of y-points vectors
```

```
S: Number >= 2 of desired segments
```

Output:

e: Errors matrix

a,b: Line-segment-coefficients matrix

xb: x-coordinate at breaking point matrix

Initialization

- $z_1 = size(x); P = z_1(2);$ Get number of points in each curve
- $z_2 = size(y); C = z_2(1);$ Get number of digitized curves

se = zeros(1,C); Initialize vector of errors, one error for each curve

Cost tables

cost = ones(P,S) * inf; cost(30,4) = min cost to pt 30 with 4-segm polylineerror = ones(P,P) * inf; error(i, n) = cached error of line segment (i,n)<math>cost(2,1) = 0; 1-segment-polyline cost of polyline (1,2) = 0

Predecessor table

```
father = ones(P,S) * inf; father(30,4) = pred of pt 30 on a 4-segm polyline
```

Computation of optimal segmentation

Initialize cost and father for 1-segment-polyline, from pt 1 to all other pts

for c = 1:C Traverse all curves

se(c) = segmentError(x(1:p), y(c,1:p)); (1,p)-line-segment appr error
end; for c

```
cost(p,1) = max(se); Maximum error among all curves
```

```
father(p,1) = 1; All 1-segment polylines have father point 1
```

end; for p


```
Compute s-segm-polyline cost from point 1 to all other points
for s = 2:S
                             Number of segments in the polyline
  for p = 3:P
                             Next-point-number to consider
    minErr = cost(p-1,s-1); minIndex = p-1; Error of (p-1,p) = 0
    for i = s:p-2
                             Next-intermediate-point to consider
      if (error(i,p) == Inf)
                             Error of line segment (i,n) not cashed
        for c = 1:C
                             Next curve-number to consider
          se(c) = segmentError(x(i:p), y(k,i:p)); (i,p)-segment error
        end; for k
        error(i,p) = max(se); Maximum line segment error
      end; if
      currErr = cost(i,s-1) + error(i,p); s-segment-polyline error
      if (currErr < minErr)</pre>
                                       Smaller error?
        minErr = currErr; minIndex = i; Update error and parent
      end; if
    end; for i
    cost(p,s) = minErr;
                             s-segment-polyline minimal cost
    father(p,s) = minIndex;
                             Last point's father on the polyline
  end; for p
end; for s
[e,a,b,xb] = ExtractAnswer;
end
```


function [e,a,b] = segmentError(x,y)
Input:

x,y: Digitized curve-segment as an x-vector and an y-vector Output:

e: Error of the line segment between the first and last point

a,b: The coeficients defining this segment

Initialization:

z = size(x); P = s(2); Find out the number of points of x,y

Compute 1-segment linear-interpolation of (x,y) coefficients

a = (y(n) - y(1)) / (x(n) - x(1));

b = (y(1) * x(n) - y(n) * x(1)) / (x(n) - x(1));

Compute perpendicular-distance error for above line segment

e = 0; Initialize Error

for p = 1:P Compute error for the each point on the curve

 $e = e + (y(p) - a * x(p) - b)^2 / (a^2+1);$ Accumulate least square end;

end


```
function [e,a,b,xb] = ExtractAnswer
```

Output:

```
e,a,b,xb: As in the output of optimalLinearApproximation
```

Initialization:

ib = zeros(S,S+1); xb = zeros(S,S+1); yb = zeros(C, S,S+1); Points matrices a = zeros(C, S,S); b = zeros(C, S,S); er = zeros(C, S,S); Coefficients/error

Extract error and coefficient matrices

```
Traverse polyline segments in inverse order
for s = S:-1:1
  ib(s,s+1) = P;
                           Get last point number
  xb(s,s+1) = x(ib(s,s+1)); Get x-value for this point
  for c = 1:C Traverse all curves
    yb(c,s,s+1) = y(c,ib(s,s+1)); Get y-value for this point
  end;
                  Traverse predecessor points in inverse order
  for i = s:-1:1
    ib(s,i) = father(ib(i,i+1),i); Get predecessor point number
    xb(s,i) = x(ib(s,i));
                                Get x-value for this point
    for c = 1:C Traverse all curves
      yb(c,s,i) = y(c,ib(s,i)); Get y-value for this point
      [er(c,s,i), a(c,s,i), b(c,s,i)] = Compute err, a and b for segm (x,y)
         segmentError( x(ib(s,i):ib(s,i+1)), y(c,ib(s,i):ib(s,i+1)) );
    end
  end;
end;
end
```