Atrial Fibrillation: Modeling Overview

Flavio H. Fenton Cornell University

MCAI

2.0

University of Pittsburgh

Normal sinus rhythm

Ventricular tachycardia

MANANANANANANANAN

Ventricular fibrillation

mmmmmmmmmm

What Underlies Arrhythmias?

To understand how arrhythmias form, we must go beyond the mechanical function of the heart to the electrical. Arrhythmias develop from disruptions in the normal electrical activation of the heart. How does electricity play a role in the heart, and how do such disruptions of normal electrical activity occur?

- Cardiac cells are about 100-150 μm in length, 10-20 μm in diameter.
- The cell membrane: lipid bi-layer 10 nm thick, impermeable to ions except through specialized proteins (ion channels).
- Ion concentration gradient and voltage drop across membrane.
- Movement of ions across the membrane produces an action potential.
- Active transport through pumps and exchangers in the membrane restores original concentrations.

Cellular Electrophysiology

If the applet does not start go to: http://thevirtualheart.org/java/cardiac/apcardiac.html

Ca²⁺, Na⁺, K⁺

Electrical-Contraction Coupling

- Cellular action potential triggers contraction through calcium processes.
- Increased calcium current stimulates release of intracellular store.
- Transiently increased calcium binds to contraction proteins.

Modeling Cell Electrophysiology

100 microns

Cell membrane thickness: 10 nanometers

The cell membrane is a lipid bilayer impermeable to ions except through specialized structures.

TABLE 4 Initial conditions (pa	cing prote	0001)	
State		Symbol	0.25 Hz
Membrane potential, mV		V	$-9.121 E^{+01}$
Intracellular sodium, mM		[Na ⁺] _i	8.006 E ⁺⁰⁰
Intracellular potassium, mM		$[K^+]_i$	$1.274 E^{+02}$
Intracellular calcium, mM		[Ca ²⁺] _i	$4.414 E^{-05}$
NSR calcium, mM		$[Ca^{2+}]_{NSR}$	$1.741 E^{-01}$
SS calcium, mM		[Ca ²⁺]ss	$4.803 E^{-03}$
JSR calcium, mM		Ca J _{ISR}	$1.741 E^{-01}$
RyR state C ₁		P ci	$7.516 E^{-05}$
RyR state C ₂		Pm	$6.337 E^{-02}$
RyR state O_2		Pm	$1.749 E^{-11}$
L-type state C_0		COL	$9.861 E^{-01}$
L-type state C_1		C_{1L}	$1.251 E^{-02}$
L-type state C_2		C_{2L}	$5.955 E^{-05}$
L-type state C_3		C _{3L}	$1.260 E^{-07}$
L-type state C_4		C_{4L}	$9.990 E^{-11}$
L-type state O			$1.210 E^{-03}$
L-type state C_{ca0}		Cau	$6140E^{-05}$
L-type state C_{cal}		Con	$1.169 E^{-06}$
L-type state Cca3		CCall	$9.889 E^{-09}$
L-type state C_{ca4}		C_{Ca4L}	$3.137 E^{-11}$
L-type inactivation variable		у	9.997 E^{-01}
High affinity troponin bound fraction	1	$HTRPN_{Ca}$	$9.359 E^{-01}$
Low affinity troponin bound fraction		LTRPN _{Ca}	$4.233 E^{-02}$
$Kv4.3$ state C_1		C _{1Kvf}	$9.527 E^{-01}$
Kv4.3 state C ₂		C _{2Kvf}	$2.565 E^{-04}$
K_{14} 3 state C_3		C _{3Kvf}	2.580 E 1 150 E^{-06}
K_{14} 3 state O		Or.e	$1.949 E^{-09}$
$K_{V4.3}$ state CI_1		CIIKM	$1.514 E^{-02}$
Kv4.3 state CI2		CI _{2Kvf}	$5.225 E^{-03}$
Kv4.3 state CI3		CI _{3Kvf}	$9.131 E^{-04}$
Kv4.3 state CI4		CI_{4Kvf}	$8.401 E^{-05}$
Kv4.3 state I		OI_{1Kvf}	$2.323 E^{-06}$
$Kv1.4$ state C_1		$C_{1 \text{Kys}}$	$7.630 E^{-01}$
$Kv1.4$ state C_2		C _{2Kvs}	$2.108 E^{-01}$
$Kv1.4$ state C_3		C _{3Kvs}	$2.184 E^{-0.2}$ 1.006 E ⁻⁰³
K_{V1} 4 state O_4		O_{4Kvs}	1.000 E $1.737 E^{-05}$
Kv14 state CL		CLive	$6.505 E^{-04}$
$K_{v1.4}$ state CI_2		Clarm	$9.517 E^{-05}$
Kv1.4 state CI3		CI _{3Kvs}	$3.820 E^{-04}$
Kv1.4 state CI ₄		CI4Kvs	$5.143 E^{-04}$
Kv1.4 state I		OI1Kvs	$1.719 E^{-03}$
$I_{\rm Kr}$ state C_1		C_{1Kr}	9.967 E^{-01}
$I_{\rm Kr}$ state C_2		C_{2Kr}	$4.163 E^{-04}$
$I_{\rm Kr}$ state C_3		C _{3Kr}	7.321 E ⁻⁰⁵
IKr state U			8.84/ E
In state Co		r _{Kr}	$9.646 F^{-01}$
$I_{K_{\pi}}$ state C_{1}		C1Ke	$3.543 E^{-02}$
I_{Ks} state O_1		O _{1Ks}	$2.294 E^{-07}$
I_{Ks} state O_2		O _{2Ks}	$4.680 E^{-11}$
I_{Na} state C_0		C_{0Na}	$1.474 E^{-01}$
I_{Na} state C_1		C_{1Na}	$4.051 E^{-02}$
I_{Na} state C_2		C_{2Na}	$4.175 E^{-03}$
I_{Na} state C_3		C_{3Na}	$1.913 E^{-04}$
I_{Na} state C_4		C _{4Na}	5.286 E
I_{Na} state O_1		O _{1Na}	1.196 E 2.160 E ⁻⁰⁹
INA state CI0		Closer	$4.869 E^{-01}$
		- UNE	a cara01
I_{Na} state CI_1	CI _{1Na}		$2.625 E^{-0.1}$
I_{Na} state CI_2	CI _{2Na}		5.306 E ⁻⁰²
I_{Na} state CI_3	CI _{3Na}		$4.768 E^{-0.3}$
I_{Na} state CI_4	CI_{4Na}		$1.606 E^{-04}$
I _{Na} state I	INA		$3.097 E^{-04}$

lyer et al Human cardiac cell model (67 Variables)

For fine tuning of the optimal parameter set, the output of the annealing algorithm is fed into a Neldar-Mead simplex search algorithm (in which only downhill moves are accepted). This approach has been shown to be superior in finding the absolute minimum of functions of several variables (Goffe, 1994).

Model equations and parameters

All rate constants are expressed in units of $\rm ms^{-1}$ unless otherwise noted. Similarly, all concentrations are expressed in mM unless otherwise noted.

Constants

See Tables 1-4.

Membrane currents

See Table 5.

 $\frac{dC_{0Na}}{dt}$

Sodium current I_{Na}

$$I_{\text{Na}} = \overline{G}_{\text{Na}}(O_{1\text{Na}} + O_{2\text{Na}})(V - E_{\text{Na}}). \qquad (1)$$

$$E_{\text{Na}} = \frac{RT}{F} \ln\left(\frac{[\text{Na}^+]_o}{[\text{Na}^+]_i}\right). \qquad (2)$$

$$= -(4\alpha + c_n)(C_{0\text{Na}}) + (\beta)(C_{1\text{Na}}) + (c_f)(CI_{0\text{Na}}). \qquad (3)$$

$$\begin{aligned} \frac{\mathrm{d} t}{\mathrm{d} t} &= -\left(\boldsymbol{\beta} + c_{\mathrm{n}} \cdot \boldsymbol{a} + 3\boldsymbol{\alpha}\right)(C_{1\mathrm{Na}}) + (4\boldsymbol{\alpha})(C_{0\mathrm{Na}}) \\ &+ (2\boldsymbol{\beta})(C_{2\mathrm{Na}}) + (c_{\mathrm{f}}/\boldsymbol{a})(CI_{1\mathrm{Na}}). \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}c_{2\mathrm{Na}}}{\mathrm{d}t} &= -\left(2\beta + c_{\mathrm{n}} \cdot a^2 + 2\alpha\right)(C_{2\mathrm{Na}}) + (3\alpha)(C_{1\mathrm{Na}}) \\ &+ (3\beta)(C_{3\mathrm{Na}}) + (c_{\mathrm{f}}/a^2)(CI_{2\mathrm{Na}}). \end{aligned}$$
$$\begin{aligned} \frac{\mathrm{d}C_{3\mathrm{Na}}}{\mathrm{d}t} &= -\left(3\beta + c_{\mathrm{n}} \cdot a^3 + \alpha\right)(C_{3\mathrm{Na}}) + (2\alpha)(C_{2\mathrm{Na}}). \end{aligned}$$

$$\begin{aligned} & \operatorname{d} t \\ & + (4\boldsymbol{\beta})(C_{4\mathrm{Na}}) + (c_{\mathrm{f}}/a^3)(CI_{3\mathrm{Na}}). \\ & \frac{\mathrm{d} C_{4\mathrm{Na}}}{\mathrm{d} t} = - (4\boldsymbol{\beta} + c_{\mathrm{n}} \cdot a^4 + \boldsymbol{\gamma} + \boldsymbol{\eta})(C_{4\mathrm{Na}}) \end{aligned}$$

$$+ (\alpha)(C_{3Na}) + (\delta)(O_{1Na}) + (\nu)(O_{2Na}) + (c_{\rm f}/a^4)(CI_{4Na}).$$

$$\begin{split} \frac{\mathrm{d} O_{1\mathrm{Na}}}{\mathrm{d} t} &= - \left(\delta + \varepsilon + o_{\mathrm{n}} \right) (O_{1\mathrm{Na}}) + (\gamma) (C_{4\mathrm{Na}}) \\ &+ (\omega) (O_{2\mathrm{Na}}) + (o_{\mathrm{r}}) (I_{\mathrm{Na}}). \end{split}$$

TABLE 1 Physical constants

Constant	Symbol	Value
Faraday's constant	F	96.5°C/mmol
Temperature	Т	310 K
Gas constant	R	8.315 J/mol -K
Boltzmann's constant	K	1.381 E ⁻²³ J/K
Planck's constant	H	6.626 E ⁻³¹ J/ms

Constant Symbol Cell capacitance Acap Myoplasm volume Vayo

Value

 $25.84 E^{-6} \mu L$

153.4 pF

$$\begin{aligned} \frac{dCI_{2Na}}{dt} &= -\left(2\beta/a + 2\alpha a + c_{\rm f}/a^2\right)(CI_{2Na}) + (3\alpha a)(CI_{1Na}) \\ &+ (3\beta/a)(CI_{3Na}) + (c_{\rm n}a^2)(C_{2Na}). \end{aligned} \tag{12} \\ \frac{dCI_{3Na}}{dt} &= -\left(3\beta/a + \alpha a + c_{\rm f}/a^3\right)(CI_{3Na}) + (2\alpha a)(CI_{2Na}) \\ &+ (4\beta/a)(CI_{4Na}) + (c_{\rm n}a^3)(C_{3Na}). \end{aligned} \tag{13} \\ \frac{dCI_{4Na}}{dt} &= -\left(4\beta/a + \gamma\gamma + c_{\rm f}/a^4\right)(CI_{4Na}) + (\alpha a)(CI_{3Na}) \\ &+ (\delta\delta)(I_{Na}) + (c_{\rm n}a^4)(C_{4Na}). \end{aligned}$$

$$\frac{\mathrm{d}I_{\mathrm{Na}}}{\mathrm{d}t} = -(\delta\delta + o_{\mathrm{f}})(I_{\mathrm{Na}}) + (\gamma\gamma)(CI_{\mathrm{4Na}}) + (o_{\mathrm{n}})(O_{\mathrm{1Na}}). \tag{15}$$

See Table 6.

(4)

(5)

(6)

(7)

(8)

Rapidly-activating delayed rectifier K⁺ current *I*_{Kr}

$$I_{\mathrm{Kr}} = \bar{\mathbf{G}}_{\mathrm{K}} f([K^+]_o)(O_{\mathrm{Kr}})(V - E_{\mathrm{K}}).$$
$$E_{\mathrm{K}} = \frac{RT}{F} \ln\left(\frac{[\mathrm{K}^+]_o}{[\mathrm{K}^+]_i}\right).$$
$$\sqrt{(E_{\mathrm{K}}^{++})}$$

$$f([\mathbf{K}^+]_{\mathbf{o}}) = \sqrt{\left(\frac{|\mathbf{K}^+]_{\mathbf{o}}}{4}\right)}.$$

$$\frac{\mathrm{d}C_{1\mathbf{K}\mathbf{r}}}{\mathrm{d}t} = -(\boldsymbol{\alpha}_0)(C_{1\mathbf{K}\mathbf{r}}) + (\boldsymbol{\beta}_0)(C_{2\mathbf{K}\mathbf{r}}).$$
(19)

$$\frac{\mathrm{d}C_{2\mathrm{Kr}}}{\mathrm{d}t} = -(\pmb{\beta}_0 + k_{\mathrm{f}})(C_{2\mathrm{Kr}}) + (\alpha_0)(C_{1\mathrm{Kr}}) + (k_{\mathrm{b}})(C_{3\mathrm{Kr}}). \eqno(20)$$

TABLE 3 Standard ionic concentrations

Permeant ion	Symbol	Value
Sodium	[Na ⁺] _o	138 mM
Potassium	[K ⁺] _o	4 mM
Calcium	[Ca ²⁺] _o	2 mM

$$\begin{aligned} \frac{\mathrm{d}O_{\mathrm{Kr}}}{\mathrm{d}t} &= -(\boldsymbol{\beta}_1 + \boldsymbol{\alpha}_i)(O_{\mathrm{Kr}}) + (\boldsymbol{\alpha}_1)(C_{3\mathrm{Kr}}) + (\boldsymbol{\beta}_i)(I_{\mathrm{Kr}}). \end{aligned} (21) \\ \frac{\mathrm{d}O_{\mathrm{Kr}}}{\mathrm{d}t} &= -(\boldsymbol{\beta}_1 + \boldsymbol{\alpha}_i)(O_{\mathrm{Kr}}) + (\boldsymbol{\alpha}_1)(C_{3\mathrm{Kr}}) + (\boldsymbol{\beta}_i)(I_{\mathrm{Kr}}). \end{aligned} (22) \\ \frac{\mathrm{d}I_{\mathrm{Kr}}}{\mathrm{d}t} &= -(\boldsymbol{\psi} + \boldsymbol{\beta}_i)(I_{\mathrm{Kr}}) + (\boldsymbol{\alpha}_{i3})(C_{3\mathrm{Kr}}) + (\boldsymbol{\alpha}_i)(O_{\mathrm{Kr}}). \end{aligned} (23) \\ \boldsymbol{\psi} &= \frac{(\boldsymbol{\beta}_1 \cdot \boldsymbol{\beta}_i \cdot \boldsymbol{\alpha}_{i3})}{(\boldsymbol{\alpha}_1 \cdot \boldsymbol{\alpha}_i)}. \end{aligned} (24)$$

See Table 7.

Slowly-activating delayed rectifier K⁺ current IKs

$$\begin{split} I_{\text{Ks}} &= \bar{G}_{\text{Ks}}(O_{1\text{Ks}} + O_{2\text{Ks}})(V - E_{\text{K}}). \end{split} \tag{25} \\ E_{\text{K}} &= \frac{RT}{F} \ln\left(\frac{[\text{K}^+]_{\alpha}}{[\text{K}^+]_{i}}\right). \end{aligned} \tag{26} \\ &\frac{\mathrm{d}C_{0\text{Ks}}}{\mathrm{d}t} = -(\alpha)(C_{0\text{Ks}}) + (\beta)(C_{1\text{Ks}}). \end{aligned} \tag{27} \\ &\frac{\mathrm{d}C_{1\text{Ks}}}{\mathrm{d}t} = -(\beta + \gamma)(C_{1\text{Ks}}) + (\alpha)(C_{0\text{Ks}}) + (\delta)(O_{1\text{Ks}}). \end{aligned} \tag{28} \\ &\frac{\mathrm{d}O_{1\text{Ks}}}{\mathrm{d}t} = -(\delta + \varepsilon)(O_{1\text{Ks}}) + (\gamma)(C_{1\text{Ks}}) + (\omega)(O_{2\text{Ks}}). \end{aligned} \tag{29} \\ &\frac{\mathrm{d}O_{2\text{Ks}}}{\mathrm{d}t} = -(\omega)(O_{2\text{Ks}}) + (\varepsilon)(O_{1\text{Ks}}). \end{aligned} \tag{30}$$

(16)

(17)

Transient outward K⁺ current Ito1

Fast recovering component, Kv4.3

$$I_{\mathrm{Kv4.3}} = \bar{G}_{\mathrm{Kv4.3}}(O_{\mathrm{Kvf}})(V - E_{\mathrm{K}}). \tag{31}$$
$$E_{\mathrm{K}} = \frac{RT}{F} \ln \left(\frac{[\mathrm{K}^{+}]_{\mathrm{o}}}{[\mathrm{K}^{+}]_{\mathrm{i}}} \right). \tag{32}$$

TABLE 5 Time-dependent current densities

Current	Symbol	Density	ω	121,955 147.814
Sodium current	G_{Na}	56.32 mS/µF	ν	121,322
Delayed rectifier, rapid component	G_{Kr}	0.0186 mS/µF	C_n	287,913
Delayed rectifier, slow component	G_{Ks}	0.0035 mS/µF	Cf	59,565
Transient outward current, fast recovery	$G_{Kv4.3}$	0.0775 mS/µF	Scaling a	1.4004
Transient outward current, slow recovery	$P_{Kv1.4}$	4.161 d ⁻⁸ cm/s	Q	1.389

$$\frac{dC_{0Kvf}}{dt} = -(4\alpha_{a} + \beta_{i})(C_{0Kvf}) + (\beta_{a})(C_{1Kvf}) + (\alpha_{i})(CI_{0Kvf}).$$
(33)

$$\begin{aligned} \frac{\mathrm{d}C_{1\mathrm{Kvf}}}{\mathrm{d}t} &= -(\boldsymbol{\beta}_{\mathrm{a}} + 3\boldsymbol{\alpha}_{\mathrm{a}} + f_{\mathrm{i}}\boldsymbol{\beta}_{\mathrm{i}})(C_{1\mathrm{Kvf}}) + (4\boldsymbol{\alpha}_{\mathrm{a}})(C_{0\mathrm{Kvf}}) \\ &+ (2\boldsymbol{\beta}_{\mathrm{a}})(C_{2\mathrm{Kvf}}) + (\boldsymbol{\alpha}_{\mathrm{i}}/b_{1})(CI_{1\mathrm{Kvf}}). \end{aligned}$$
(34)

$$\begin{aligned} \frac{\mathrm{d}C_{2\mathrm{Kvf}}}{\mathrm{d}t} &= -(2\beta_{\mathrm{a}} + 2\alpha_{\mathrm{a}} + f_{2}\beta_{\mathrm{i}})(C_{2\mathrm{Kvf}}) + (3\alpha_{\mathrm{a}})(C_{1\mathrm{Kvf}}) \\ &+ (3\beta_{\mathrm{a}})(C_{3\mathrm{Kvf}}) + (\alpha_{\mathrm{i}}/b_{2})(CI_{2\mathrm{Kvf}}). \end{aligned}$$

$$\begin{aligned} \frac{\mathrm{d}C_{3\mathrm{Kvf}}}{\mathrm{d}t} &= -(3\beta_{\mathrm{a}} + \alpha_{\mathrm{a}} + \mathrm{f}_{3}\beta_{\mathrm{i}})(C_{3\mathrm{Kvf}}) + (2\alpha_{\mathrm{a}})(C_{2\mathrm{Kvf}}) \\ &+ (4\beta_{\mathrm{a}})(C_{4\mathrm{Kvf}}) + (\alpha_{\mathrm{i}}/b_{3})(CI_{3\mathrm{Kvf}}). \end{aligned} \tag{36}$$

$$\frac{\mathrm{d}O_{\mathrm{Kvf}}}{\mathrm{d}t} = -(4\beta_{\mathrm{a}} + \mathrm{f}_{4}\beta_{\mathrm{i}})(O_{\mathrm{Kvf}}) + (\alpha_{\mathrm{a}})(C_{3\mathrm{Kvf}}) + (\alpha_{\mathrm{i}}/b_{4})(OI_{\mathrm{Kvf}}).$$
(37)

$$\begin{aligned} \frac{\mathrm{d}CI_{0\mathrm{Kef}}}{\mathrm{d}t} &= -(b_1 4\alpha_\mathrm{a} + a_\mathrm{i})(CI_{0\mathrm{Kef}}) + (\boldsymbol{\beta}_\mathrm{a}/f_1)(CI_{1\mathrm{Kef}}) \\ &+ (\boldsymbol{\beta}_\mathrm{i})(C_{0\mathrm{Kef}}). \end{aligned} \tag{38}$$

TABLE 6 I_{Na} rate constants

10

	$\lambda = Q \frac{kT}{h} \exp\left(\frac{-\Delta H_{\lambda}}{RT} + \frac{\Delta S_{\lambda}}{R} + \frac{z_{\lambda}FV}{RT}\right) \text{ parameters}$		
Rate constant	ΔH , J/mol	ΔS , J/mol –K	z
α	114,007	224.114	0.2864
β	272,470	708.146	-2.2853
γ	196,337	529.952	2.7808
δ	133,690	229.205	-1.5580
On	62,123	39.295	0.2888
O _f	97,658	1.510	0.0685
$\gamma\gamma$	-116,431	-578.317	0.7641
δδ	55,701	-130.639	-3.6498
8	85,800	70.078	0
ω	121,955	225.175	0
η	147,814	338.915	2.1360
ν	121,322	193.265	-1.7429
$C_{\mathbf{n}}$	287,913	786.217	0
C_{f}	59,565	0.00711	0
Scaling a	1.4004		
Q	1.389		

TABLE 7 I _{Kr} rate cons	tants	d
Rate constant	Value	
α_0	0.0171 · exp(0.0330 V) ms ⁻¹	
β_{o}	0.0397 · exp(-0.0431 V) ms ⁻¹	
α_1	0.0206 · exp(0.0262 V) ms ⁻¹	dC_{1Km}
β_1	0.0013 · exp(-0.0269 V) ms ⁻¹	$\frac{dc_{1Kvs}}{dt} =$
α_i	0.1067 · exp(0.0057 V) ms ⁻¹	dł
β_i	0.0065 · exp(-0.0454 V) ms ⁻¹	-1
α _{i3}	$8.04 E^{-3} \cdot \exp(6.98 E^{-3} \text{ V}) \text{ ms}$	-
κ _f k _b	0.0261 ms ⁻¹	dC_{2Kvs}
$\frac{\mathrm{d}CI_{1\mathrm{Kvf}}}{\mathrm{d}t} = -(\boldsymbol{\beta}_{\mathrm{a}}/f_{1}$	$+ b_2 3 \alpha_{\rm a}/b_1 + \alpha_{\rm i}/b_1) (CI_{\rm 1Kyf})$	d <i>t</i>
$+ (b_1 4 \alpha$	$(CI_{0Kvf}) + (f_1 2 \beta_a / f_2) (CI_{2Kvf})$	10
$+ (f_1 \beta_i)$	$(C_{1Kvf}).$ (3)	$\frac{dC_{3Kvs}}{dt} = $
$\frac{dCI_{2Kvf}}{dCI_{2Kvf}} = -(f_1 2\beta_s/f_2)$	$+b_32\alpha_a/b_2+\alpha_i/b_2)(CI_{2Kyf})$	
$dt + (h_3 \alpha_1/h_1)$	$(CL_{rest}) + (f_{3}\beta_{1}/f_{2})(CL_{rest})$	d
(0250a)/0	$(C_{1}Kvf) + (J_2 J_{a}/J_3)(C_{13}Kvf)$	<u><u> </u></u>
$+ (f_2 \beta_i) (C_{2B})$	_{(vf}). (4	0)
$\frac{\mathrm{d}CI_{3Kvf}}{\mathrm{d}t} = -(f_2 3\beta_a/f_3)$	$+ b_4 lpha_\mathrm{a}/b_3 + lpha_\mathrm{i}/b_3)(CI_{3\mathrm{Kvf}})$	dCI _{OK}
$+(h_2)\alpha_1/h_2$	$(CI_{m}) + (f_{c}AB_{c}/f_{c})(OI_{m})$	dt
$(b_3 \Delta \alpha_a / b_2)$	$(O_{2Kvf}) + (J_{3}+D_{a}/J_{4})(O_{Kvf})$	
$+(f_3\boldsymbol{\beta}_{\mathrm{i}})(C_{3\mathrm{B}})$	_{(vf}). (4	1)
$\frac{\mathrm{d}OI_{\mathrm{Kvf}}}{\mathrm{d}t} = -\left(f_3 4\beta_a\right)/2$	$(f_4 + lpha_\mathrm{i}/b_4)(OI_\mathrm{Kvf}) + (b_4 lpha_\mathrm{a}/b_3)$	$\frac{dCI_{1K}}{dt}$
$\times (CI_{3Kvf})$	$+ (f_4 \beta_i) (O_{Kvf}).$ (4)	2)
Slowly recovering con	nponent, Kv1.4	
$I_{\mathrm{Kvl.4}} = P_{\mathrm{Kvl.4}} O_{\mathrm{Kvs}} \frac{4VF}{RT}$	$\frac{2}{2} \frac{[K^+]_s \exp\left(\frac{VF}{RT}\right) - [K^+]_o}{\exp\left(\frac{VF}{RT}\right) - 1} + I_{Kvl.4Na}.$	$\frac{\mathrm{d}CI_{2Kvs}}{\mathrm{d}t} =$
	(4.	3)
$I_{\mathrm{Kvl.4Na}} = 0.02 \cdot P_{\mathrm{Kvl.4}}$	$_{0}O_{\text{Kvs}} \frac{4VF^2}{RT} \frac{[\text{Na}^+]_i \exp\left(\frac{VF}{RT}\right) - [\text{Na}^+]_c}{\exp\left(\frac{VF}{RT}\right) - 1}$	$\frac{\mathrm{d}CI_{3\mathrm{Kvs}}}{\mathrm{d}t} =$
	$\exp\left(\frac{RT}{RT}\right) = 1$	0
	(4	$\frac{dOI_{Kvs}}{dt} =$
TABLE 8 I _{Ks} rate cons	stants	u
Rate constant	Value	See Table 9
α	7.956 E^{-3} ms ⁻¹	
β	2.16 $E^{-1} \cdot \exp(-0.00002 \text{ V}) \text{ ms}$	-1
γ	$3.97 E^{-2} ms^{-1}$	Time-ind
ŏ	$7 E^{-3} \cdot \exp(-0.15 \text{ V}) \text{ ms}^{-1}$	
8	$7.07 E = \exp(0.087 V) \text{ ms}^{-1}$	
ω	$3.80 E = (\exp(-0.014 \text{ V}) \text{ ms}^{-1}$	

$\frac{\mathrm{d}C_{\mathrm{OKvs}}}{\mathrm{d}t} = -(4\alpha_{\mathrm{a}} + \beta_{\mathrm{i}})(C_{\mathrm{OKvs}}) + (\beta_{\mathrm{a}})(C_{\mathrm{1Kvs}})$	
$+ (\alpha_i)(CI_{0Kvs}).$	(45)
$\frac{f_{\rm IKvs}}{dt} = -\left(\boldsymbol{\beta}_{\rm a} + 3\boldsymbol{\alpha}_{\rm a} + f_{\rm i}\boldsymbol{\beta}_t\right) (\boldsymbol{C}_{\rm IKvs}) + (4\boldsymbol{\alpha}_{\rm a})(\boldsymbol{C}_{\rm 0Kvs})$	
+ $(2\beta_{a})(C_{2Kvs})$ + $(\alpha_{i}/b_{1})(CI_{1Kvs})$.	(46)
$\frac{C_{2\mathbf{K}_{YS}}}{\mathrm{d}t} = -\left(2\boldsymbol{\beta}_{\mathrm{a}} + 2\boldsymbol{\alpha}_{\mathrm{a}} + f_{2}\boldsymbol{\beta}_{i}\right)(C_{2\mathbf{K}_{YS}})$	
$+ (3\alpha_{a})(C_{1\mathrm{Kvs}}) + (3\beta_{a})(C_{3\mathrm{Kvs}}) + (\alpha_{i}/b_{2})(Cl_{2})$	_{Kvs}). (47)
$\frac{f_{3\mathbf{K}vs}}{dt} = -\left(3\boldsymbol{\beta}_{a} + \boldsymbol{\alpha}_{a} + f_{3}\boldsymbol{\beta}_{i}\right)(C_{3\mathbf{K}vs}) + (2\boldsymbol{\alpha}_{a})(C_{2\mathbf{K}vs})$	
+ $(4\beta_a)(C_{4\mathrm{Kvs}}) + (\alpha_i/b_3)(CI_{3\mathrm{Kvs}}).$	(48)
$\frac{\mathrm{d}O_{\mathrm{Kys}}}{\mathrm{d}t} = -\left(4\boldsymbol{\beta}_{\mathrm{a}} + f_{\mathrm{f}}\boldsymbol{\beta}_{i}\right)(O_{\mathrm{Kys}}) + (\boldsymbol{\alpha}_{\mathrm{a}})(C_{\mathrm{3Kys}})$	
$+ (lpha_i/b_4)(OI_{Kvs}).$	(49)
$\frac{\mathrm{d}CI_{\mathrm{OKvs}}}{\mathrm{d}t} = -(b_1 4\alpha_{\mathrm{a}} + a_i)(CI_{\mathrm{OKvs}}) + (\boldsymbol{\beta}_{\mathrm{a}}/f_1)(CI_{\mathrm{IKvs}})$	
$+ (\boldsymbol{\beta}_{\mathrm{i}})(C_{\mathrm{OKvs}}).$	(50)
$\frac{\mathrm{d}CI_{\mathrm{1Kvs}}}{\mathrm{d}t} = -\left(\boldsymbol{\beta}_{\mathrm{a}}/f_{1} + b_{2}3\boldsymbol{\alpha}_{\mathrm{a}}/b_{1} + \boldsymbol{\alpha}_{\mathrm{i}}/b_{1}\right)\left(CI_{\mathrm{1Kvs}}\right)$	
$\begin{split} &+ (b_1 4 \boldsymbol{\alpha}_{a}) (C I_{0 \mathrm{Kvs}}) + (f_1 2 \boldsymbol{\beta}_{a} / f_2) (C I_{2 \mathrm{Kvs}}) \\ &+ (f_1 \boldsymbol{\beta}_{i}) (C_{1 \mathrm{Kvs}}). \end{split}$	(51)
$\frac{I_{2_{\mathrm{Kvs}}}}{\mathrm{d}t} = -\left(f_1 2\beta_{\mathrm{a}}/f_2 + b_3 2\alpha_{\mathrm{a}}/b_2 + \alpha_{\mathrm{i}}/b_2\right)\left(CI_{2_{\mathrm{Kvs}}}\right)$	
$ + (b_2 3\alpha_a/b_1)(CI_{1\mathrm{Kvs}}) + (f_2 3\beta_a/f_3)(CI_{3\mathrm{Kvs}}) + (f_2\beta_i)(C_{2\mathrm{Kvs}}). $	(52)
$\frac{I_{3\mathrm{Kvs}}}{\mathrm{d}t} = -\left(f_2 3\beta_{\mathrm{a}}/f_3 + b_4 \alpha_{\mathrm{a}}/b_3 + \alpha_{\mathrm{i}}/b_3\right)(CI_{3\mathrm{Kvs}})$	
$\begin{split} &+ (b_3 2\alpha_{\rm s}/b_2)(CI_{\rm 2Kvs}) + (f_3 4\beta_{\rm s}/f_4)(OI_{\rm Kvs}) \\ &+ (f_3\beta_{\rm i})(C_{\rm 3Kvs}). \end{split}$	(53)
$\frac{M_{\rm Kvs}}{dt} = -(f_3 4 \beta_{\rm a}/f_4 + \alpha_{\rm i}/b_4)(OI_{\rm Kvs}) + (b_4 \alpha_{\rm a}/b_3)(CI_{\rm MV})$	_{Kvs})
$+ (f_4 \boldsymbol{\beta}_{\mathrm{i}})(O_{\mathrm{Kvs}}).$	(54)
Table 9.	
me-independent K ⁺ current I _{K1}	

$$I_{\mathrm{Kl}} = \bar{\boldsymbol{G}}_{\mathrm{Kl}} K_{1}^{\infty}(V) \left(\sqrt{[\mathrm{K}^{+}]_{\mathrm{o}}} \right) (V - E_{\mathrm{K}}).$$
(55)

->

Rate constant	Kv4.3 current, ms ⁻¹	Kv1.4 current, ms ⁻¹
αa	0.675,425 · exp(0.0255 V)	1.840024 · exp(0.0077 V)
β_{a}	0.088269 · exp(-0.0883 V)	0.010817 · exp(-0.0779 V)
α_i	0.109566	0.003058
β_i	$3.03334 E^{-4}$	$2.4936 E^{-6}$
f_1	1.66120	0.52465
f_2	22.2463	17.5188
f_3	195.978	938.587
f_4	181.609	54749.1
b_1	0.72246	1.00947
b_2	0.47656	1.17100
b_3	7.77537	0.63902
b_4	318.232	2.12035
	$E_{\mathbf{K}} = \frac{RT}{F} \ln \left(\frac{[\mathbf{K}^{+}]}{[\mathbf{K}^{+}]} \right)$	$\left _{\underline{o}}\right)$. (57)
		-
	$\bar{G}_{K1} = 0.125 \frac{m}{\mu F \cdot n}$	$\frac{S}{nM^{1/2}}$. (58)
Sodium h	$ar{G}_{ extsf{Kl}}=0.125rac{m}{\mu F\cdot n}$ andling mechanisms	<u>S</u> (58)
Sodium h NCX curren	$ar{G}_{ extsf{K1}}=0.125rac{m}{\mu F\cdot n}$ andling mechanisms $t \mathrm{I}_{ extsf{NaCa}}$	<u>S</u> (58)

$$\begin{split} {}_{\mathbf{N}a\mathbf{C}a} &= k_{\mathbf{N}a\mathbf{C}a} \frac{1}{K_{\mathbf{m},\mathbf{N}a}^{3} + [\mathbf{N}a^{+}]_{o}^{3}} \frac{1}{K_{\mathbf{m},\mathbf{C}a} + [\mathbf{C}a^{2^{+}}]_{o}} \frac{1}{1 + k_{axe} e^{(\eta-1)\frac{\mathbf{V}T}{\mathbf{K}T}}} \\ &\times \left(e^{\frac{\eta \mathbf{V}T}{\mathbf{K}T}} [\mathbf{N}a^{+}]_{i}^{3} [\mathbf{C}a^{2^{+}}]_{o} - e^{\frac{(\eta-1)\mathbf{V}T}{\mathbf{K}T}} [\mathbf{N}a^{+}]_{o}^{3} [\mathbf{C}a^{2^{+}}]_{i} \right). \end{split}$$
(59)

 Na^+ background current $I_{Na,b}$

TABLE 9 Ito1 rate constants

$$I_{Na,b} = \overline{G}_{Na,b}(V - E_{Na}).$$

$$I_{\text{NaK}} = k_{\text{NaK}} f_{\text{NaK}} \frac{1}{1 + \left(\frac{K_{\text{mNa}}}{|\mathbf{Na}^*|}\right)^{1.5}} \frac{[\mathbf{K}^+]_o}{[\mathbf{K}^+]_o + K_{\text{mKo}}}.$$
 (61)

$$f_{\text{NaK}} = \frac{1}{1 + 0.1245e^{-0.1\frac{\text{VF}}{\text{RT}}} + 0.0365\sigma e^{-1.33\frac{\text{VF}}{\text{RT}}}}.$$
 (62)

$$\sigma = \frac{1}{7} \left(e^{\frac{|\mathbf{Na}^+|_0}{673}} - 1 \right).$$

See Table 10.

TABLE 10 Sodium handling parameters Parameter Value $G_{Na,b}$ 0.001 mS/µF $K_{m,Na}$ $K_{m,Ca}$ 87.5 mM 1.38 mM k_{sat} 0.2 0.35 η k_{NaK} 2.387 μA/μF 20 mM K_{m,Nai} K_{m,Ko} 1.5 mM

Calcium handling mechanisms

Sarcolemmal Ca^{2+} pump current $I_{\rho(Ca)}$

$$I_{p(Ca)} = \bar{I}_{p(Ca)} \frac{[Ca^{2+}]_i}{K_{m,p(Ca)} + [Ca^{2+}]_i}.$$
 (64)

 Ca^{2+} background current $I_{Ca,b}$

$$I_{Ca,b} = \bar{G}_{Ca,b}(V - E_{Ca}).$$
 (65)

$$E_{\rm Ca} = \frac{RT}{2F} \ln\left(\frac{[{\rm Ca}^{2+}]_{\rm o}}{[{\rm Ca}^{2+}]_{\rm i}}\right). \tag{66}$$

See Table 11.

(60)

L-type Ca²⁺ current I_{Ca}

$$\alpha = 1.997e^{0.012(V-35)}.$$
 (67)

$$\beta = 0.0882 e^{-0.065(V-22)}.$$
 (68)

 $\alpha' = \alpha a.$ (69)

$$\beta' = \frac{\beta}{b}.$$
 (70)

 $\gamma = 0.0554 [Ca^{2+}]_{ss}$ (71)

$$\frac{\mathrm{d}C_{\mathrm{OL}}}{\mathrm{d}t} = -(4\alpha + \gamma)C_{\mathrm{OL}} + \beta C_{\mathrm{IL}} + \omega C_{\mathrm{CaOL}}.$$
 (72)

$$\frac{\mathrm{d}C_{1L}}{\mathrm{d}t} = -(3\alpha + \beta + \gamma a)C_{1L} + 4\alpha C_{0L} + 2\beta C_{2L} + \frac{\omega}{b}C_{\mathrm{CalL}}.$$
(73)

$$\frac{\mathrm{d}C_{\mathrm{2L}}}{\mathrm{d}t} = -(2\alpha + 2\beta + \gamma a^2)C_{\mathrm{2L}} + 3\alpha C_{\mathrm{1L}} + 3\beta C_{\mathrm{3L}} + \frac{\omega}{b^2}C_{\mathrm{GGL}}.$$
(74)

$$\frac{\mathrm{d}C_{\mathrm{SL}}}{\mathrm{d}t} = -(\alpha + 3\beta + \gamma a^3)C_{\mathrm{SL}} + 2\alpha C_{\mathrm{SL}} + 4\beta C_{\mathrm{sL}} + \frac{\omega}{b^3}C_{\mathrm{CaSL}}.$$
(75)

(63)
$$\frac{dC_{4L}}{dt} = -(f + 4\beta + \gamma a^4)C_{4L} + \alpha C_{3L} + gO_L + \frac{\omega}{b^4}C_{Ca4L}.$$
(76)

(76)

TABLE 11 Membrane calcium exchangers, background current	
Parameter	Value
$\bar{I}_{p(Ca)}$	0.05 pA/pF
K _{m,p(Ca)}	0.0005 mM
GCab	$7.684 \ d^{-5} \ ms/\mu$

$$\frac{\mathrm{d}O_{\mathrm{L}}}{\mathrm{d}t} = -gO_{\mathrm{L}} + fC_{4L}.$$
(77)

$$\begin{aligned} \frac{\mathrm{d}C_{\mathrm{ColL}}}{\mathrm{d}t} &= -(4\alpha'+\omega)C_{\mathrm{CalL}} + \beta'C_{\mathrm{CalL}} + \gamma C_{\mathrm{0L}}. \end{aligned} (78) \\ \frac{\mathrm{d}C_{\mathrm{CalL}}}{\mathrm{d}t} &= -\left(3\alpha'+\beta'+\frac{\omega}{b}\right)C_{\mathrm{CalL}} + 4\alpha'C_{\mathrm{ColL}} \\ &+ 2\beta'C_{\mathrm{CalL}} + \gamma aC_{\mathrm{1L}}. \end{aligned} (79)$$

$$\frac{\mathrm{d}C_{\mathrm{CalL}}}{\mathrm{d}t} = -\left(2\alpha' + 2\beta' + \frac{\omega}{b^2}\right)C_{\mathrm{CalL}} + 3\alpha'C_{\mathrm{CalL}} + 3\beta'C_{\mathrm{CalL}} + \gamma a^2C_{\mathrm{2L}}.$$

$$\frac{\mathrm{d}C_{\mathrm{CaSL}}}{\mathrm{d}t} = -\left(\alpha' + 3\beta' + \frac{\omega}{b^3}\right)C_{\mathrm{CaSL}} + 2\alpha'C_{\mathrm{CaSL}} + 4\beta'C_{\mathrm{CaSL}} + \gamma a^3C_{\mathrm{SL}}.$$

$$\frac{dC_{CasL}}{dt} = -\left(4\beta' + \frac{\omega}{b^4}\right)C_{CasL} + \alpha'C_{CaSL} + \gamma a^4C_{4L}.$$
 (82)
$$\frac{dy_{Ca}}{dt} = \frac{y_{\infty} - y}{dt}.$$
 (83)

$$\frac{dy}{dt} = \frac{y_x}{\tau_y}.$$

$$y_{\infty} = \frac{y_{\pm \frac{23}{73}}}{1 + e^{\frac{y_{\pm \frac{23}{73}}}{73}}} + 0.18.$$

$$T_y = \frac{0.00653}{0.5 + e^{-V/7.1}} + 0.00512e^{-V/39.8}$$

$$\bar{I}_{Ca} = \frac{\bar{P}_{Ca}}{C_{sc}} \frac{4VF^2}{RT} \frac{0.001e^{2VF/RT} - 0.341[Ca^{2+}]_o}{e^{2VF/RT} - 1}.$$
$$I_{Ca} = \bar{I}_{Ca} y O_L$$

$$\begin{split} I_{\mathrm{Ca,K}} = & \frac{P'_{\mathrm{K}}}{C_{\mathrm{SC}}} \mathcal{YO}_{\mathrm{L}} \left(\frac{VF^2}{RT} \frac{[\mathrm{K}^+]_{\mathrm{s}} \mathrm{e}^{\frac{VF}{\mathrm{KT}}} - [\mathrm{K}^+]_{\mathrm{o}}}{\mathrm{e}^{\frac{VF}{\mathrm{KT}}} - 1} \right) \\ P'_{\mathrm{K}} = & \frac{\bar{P}_{\mathrm{K}}}{1 + \frac{\bar{I}_{\mathrm{Ca}}}{I_{\mathrm{Ca,hulf}}}} \end{split}$$

See Table 12.

RyR channel

 $\frac{\mathrm{d} P_{\rm C1}}{\mathrm{d} t} = -k_{\rm a}^{+} [{\rm Ca}^{2\,+}]_{\rm ss}^{\rm n} P_{\rm C1} + k_{\rm a}^{-} P_{\rm O1}.$

TABLE 12	I _{Ca} parameters	
Parameter		Value
f		0.3 ms ⁻¹
g		4 ms^{-1}
a		2
b		2
ω		$2.5 d^{-3} ms^{-1} mm^{-1}$
PCa		1.7283 d ⁻³ cm/s
PK		3.2018 d ⁻⁶ cm/s
I _{Ca,half}		-0.265 pA/pF

$$\frac{dP_{OI}}{dt} = k_{a}^{+} [Ca^{2+}]_{ss}^{n} P_{C1} - k_{a}^{-} P_{O1} - k_{b}^{+} [Ca^{2+}]_{ss}^{m} P_{O1} + k_{b}^{-} P_{O2} - k_{c}^{+} P_{O1} + k_{c}^{-} P_{C2}.$$
(91)
$$\frac{dP_{O2}}{dt} = k_{b}^{+} [Ca^{2+}]_{ss}^{m} P_{O1} - k_{b}^{-} P_{O2}.$$
(92)
$$\frac{dP_{C2}}{dt} = t_{b}^{+} p_{C2} - t_{c}^{+} p_{C2} - t_{c}^{-} p_{C2}.$$
(92)

$$\frac{dP_{c2}}{dt} = k_c^+ P_{01} - k_c^- P_{C2}.$$
(93)
$$J_{rel} = v_1(P_{01} + P_{02})([Ca^{2+}]_{rsp} - [Ca^{2+}]_{ss}).$$
(94)

SERCA2a pump

(80)

(81)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

$$f_{b} = \left(\frac{\left[\operatorname{Ca}^{2+}\right]_{i}}{K_{b}}\right)^{N_{b}}.$$
$$r_{b} = \left(\frac{\left[\operatorname{Ca}^{2+}\right]_{NSR}}{K_{cb}}\right)^{N_{b}}.$$

$$J_{up} = K_{\rm SR} \left(\frac{1}{1 + f_{\rm b} + r_{\rm b}} \right). \label{eq:Jup}$$
 See Table 13.

Intracellular Ca²⁺ fluxes

$$J_{
m tr} = rac{[{
m Ca}^{2^+}]_{
m NSR} - [{
m Ca}^{2^+}]_{
m JSR}}{ au_{
m tr}}.$$

Parameter

 $\begin{array}{c} K_{a}^{+} \\ K_{a}^{-} \\ K_{b}^{+} \\ K_{c}^{-} \\ V_{1} \\ K_{fb} \\ N_{fb} \\ K_{rb} \\ N_{rb} \end{array}$

 v_{maxf}

 v_{maxr}

 K_{SR}

Value
$0.01215 \ \mu M^{-4} \ ms^{-1}$
0.576 ms
0.00405 µM ⁻⁵ ms ⁻⁴
1.93 ms ⁻¹
0.3 ms ⁻¹
0.0009 ms ⁻¹
1.8 ms ⁻¹
0.000168 mM
1.2
3.29 mM
1
$0.0748 \ d^{-3} \ mM/ms$
0.03748 d ⁻³ mM/ms
1.2

$$J_{xter} = \frac{[Ca^{2+}]_{xx} - [Ca^{2+}]_{x}}{\tau_{xter}}.$$
(99)
$$\beta_{ISR} = \left(1 + \frac{[CSQN]_{tot}K_m^{CSQN}}{(K_m^{CSQN} + [Ca^{2+}]_{ISR})^2}\right)^{-1}.$$
(108)
$$J_{tepn} = \frac{d[HTRPN_{Ca}]}{dt} + \frac{d[LTRPN_{Ca}]}{dt}.$$
(100)
$$\frac{d[Ca^{2+}]_{xx}}{dt} = \beta_{m}\left(J_{xt}\frac{V_{ISR}}{T} - J_{xt}\frac{V_{myo}}{T} - (I_{Ca})\frac{A_{mp}C_{m}}{T}\right).$$
(109)

(100)
$$\frac{\mathrm{d}[\mathrm{Ca}^{2+}]_{\mathrm{ss}}}{\mathrm{d}t} = \beta_{\mathrm{ss}} \left(J_{\mathrm{ss}} \frac{V_{\mathrm{ISR}}}{V_{\mathrm{ss}}} - J_{\mathrm{sfer}} \frac{V_{\mathrm{myo}}}{V_{\mathrm{ss}}} - (I_{\mathrm{Ca}}) \frac{A_{\mathrm{cap}} C_{\mathrm{sc}}}{2V_{\mathrm{ss}} F} \right).$$
(109)

$$\frac{\mathrm{d}[\mathrm{Ca}^{2^+}]_{\mathrm{JSR}}}{\mathrm{d}t} = \beta_{\mathrm{JSR}}(J_{\mathrm{tr}} - J_{\mathrm{rel}}). \tag{110}$$

$$\frac{d[Ca^{2^+}]_{NSR}}{dt} = J_{up} \frac{V_{myo}}{V_{NSR}} - J_{tr} \frac{V_{ISR}}{V_{NSR}}.$$
 (111)

$$\begin{aligned} \frac{dV}{dt} &= -\left(I_{Na} + I_{Ca} + I_{Ca} + I_{Kr} + I_{Kr} + I_{Ks} + I_{K1} + I_{NaCa} + I_{NaK} \right. \\ &+ I_{Kv1.4} + I_{Kv4.3} + I_{p(Ca)} + I_{Ca,b} + I_{Na,b} + I_{stim}\right). \end{aligned} (112) \\ I_{stim} &= -100 \text{ pA/pF}. \end{aligned}$$

$$\begin{aligned} \frac{d[Na^{+}]_{i}}{dt} &= -(I_{Na} + I_{Na,b} + 3I_{NaCa} + 3I_{NaK} + I_{Kv1.4,Na})\frac{A_{cap}C_{\infty}}{V_{myo}F}. \end{aligned} (103) \\ \frac{d[K^{+}]_{i}}{dt} &= -(I_{Kr} + I_{Ks} + I_{Kv4.3} + I_{Kv1.4,K} + I_{K1} + I_{Ca,K} \\ &- 2I_{NaK} + I_{rim})\frac{A_{cap}C_{\infty}}{V_{myo}F}. \end{aligned} (104) \\ \frac{d[Ca^{2+}]_{i}}{dt} &= \beta_{i} \left(J_{xkr} - J_{up} - J_{tmn} - (I_{Ca,b} - 2I_{NaCa} + I_{p(Ca)}) \\ &\times \frac{A_{cap}C_{sc}}{2V_{myo}F}\right). \end{aligned} (105) \\ \beta_{i} &= \left(1 + \frac{[CMDN]_{ist}K_{m}^{CMDN}}{(K_{m}^{CMDN} + [Ca^{2+}]_{i})^{2}} + \frac{[EGTA]_{ist}K_{m}^{EGTA}}{(K_{m}^{EGTA} + [Ca^{2+}]_{i})^{2}}\right). \end{aligned} (106) \\ \beta_{ss} &= \left(1 + \frac{[CMDN]_{ist}K_{m}^{CMDN}}{(x_{c}^{CMDN} + [Ca^{2+}]_{i})^{2}} + \frac{[EGTA]_{ist}K_{m}^{EGTA}}{(x_{m}^{EGTA} + [Ca^{2+}]_{i})^{2}}\right). \end{aligned}$$

 $\frac{\mathrm{d}[HTRPN_{\mathrm{Ca}}]}{\mathrm{d}t} = k^{+}_{\mathrm{heye}}[\mathrm{Ca}^{2^{+}}]_{\mathrm{i}}([HTRPN]_{\mathrm{sot}}$

 $\frac{\mathrm{d}[LTRPN_{\mathrm{Ca}}]}{\mathrm{d}t} = k_{\mathrm{leps}}^{+}[\mathrm{Ca}^{2^{+}}]_{i}([LTRPN]_{\mathrm{tot}}$

Intracellular ion concentrations and

See Table 14.

(95)

(96)

(97)

(98)

membrane potential

 $- [HTRPN_{Ca}]) - k_{httpn}^{-}[HTRPN_{Ca}]. \quad (101)$

 $- [LTRPN_{Ca}]) - k^{-}_{lepn}[LTRPN_{Ca}]. \quad (102)$

$$I_{ss} = \left(1 + \frac{[CMDN]_{so}K_{m}^{CMDN}}{(K_{m}^{CMDN} + [Ca^{2+}]_{ss})^{2}} + \frac{[EGTA]_{tot}K_{m}^{EGTA}}{(K_{m}^{EGTA} + [Ca^{2+}]_{ss})^{2}}\right).$$
(107)

TABLE 14 Calcium buffering and diffusion

Parameter	Value
τ_{tr}	0.5747 ms
τ_{xfer}	26.7 ms
HTRPNtet	$140 d^{-3} \text{ mM}$
LTRPNtot	$70 d^{-3} mM$
K ⁺ _{HTRPN}	$20 \text{ mM}^{-1} \text{ ms}^{-1}$
KHTEPN	$0.066 \ d^{-3} \ ms^{-3}$
K ⁺ _{LTRPN}	$40 \text{ mM}^{-1} \text{ ms}^{-1}$
K _{1,TEPN}	$40 d^{-3} ms^{-1}$
K ^{CMDN}	2.38 d ⁻³ mM
K ^{CSQN}	0.8 mM
KEGTA	$1.5 d^{-4} \text{ mM}$
EGTAtot	0 mM

Cell Electrophysiology and Waves in Tissue

Cells connected in a 2D preparation

Ventricular Structure

│ 150μm │ D_{||} : D_⊥ 10 : 1

Ventricular Structure

Atrial Structure

Visualization of Electrical Activity in the Heart

Visualizing Electrical Activity

- Computer simulations.
 - Mathematical models of cellular electrophysiology.
- Optical mapping.
 - Fluorescence recordings using voltagesensitive dyes.
 - Intensity proportional to membrane potential.

Normal Sinus Rhythm Plane Waves (Optical Mapping)

Electrical activity in the atria Electrical activity in the ventricle

Spiral Waves in the Heart

Induction of Spiral Waves

Spiral (reentrant) waves can be initiated when tissue has repolarized nearly, but not fully, to the rest state.

Induction of Spiral Waves

Spiral (reentrant) waves can be initiated when tissue has repolarized nearly, but not fully, to the

There is a vulnerable window of time for initiation.

Experimental spiral waves

Circular core Spiral wave

Linear core Spiral wave

Cherry EM, Fenton FH. New Journal of Physics 2008; 10: 125016

How to Visualize Reentry in 3D?

How to Visualize Reentry in 3D?

Similar to water spouts

How to Visualize Reentry in 3D?

Vortex interactions

Ring creation

Ring fusion

Vortex pinching

Many Models for Different Cell Types

Implemented most (~40) of the published models in single cells and in tissue.

Fenton FH, Cherry EM, 2008. Models of cardiac cell. Scholarpedia 3, 1868.

Many Models for Different Cell Types

Implemented most (~40) of the published models in single cells and in tissue.

26 variables 2D (200x200x26 =1,040,000)

dt ~ .01ms 1s of simulation = 1,040,000*100000 =1x10¹¹

Fenton FH, Cherry EM, 2008. Models of cardiac cell. Scholarpedia 3, 1868.
Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Implemented most (~40) of the published models in single cells and in tissue.

Anatomically Realistic Model of Human Atria

Dimensions: 7.5cm x 7cm x 5.5cm 2.5 million nodes

Harrild and Henriquez, 2000 + coronary sinus

Bachmann's Bundle

Superior Vena Cava Left Atrial Appendage Left Atrium Right Atrium Coronary Sinus

Pulmonary Veins

Bundle Conductivities

Healthy atria Fast CV: 150 cm/ Bulk CV: 60 cm/s Slow CV: 35 cm/s

Intercaval Bundle

-Superior Vena Cava —— Right Atrium—— —Pectinate Muscles—

-Crista Terminalis-

Fossa Ovalis

Reentry in the Atrial Model

Atrial Tachycardia

Atrial Fibrillation

How to terminate reentrant arrhythmias?

Modeling AF Ablation

Left atrial lines only

Left + right lines

Modeling AF defibrillation

• Electrical therapies

ATP (effective only for slow tachycardias)
Electrical cardioversion (requires >5V/cm)¹
External ~ 100J - 280J up to 360J (1000V, 30-45 A)³
Internal ~7J (350V, 4 A)²

 Ideker RE, Zhou X, Knisley SB. Pacing Clin Electrophysiol 1995;18:512-525.
Santini et al. J Interv Card Electrophysiol 1999;3:45-51.
Koster et al. Am Heart J 2004;147:e20-e26.

New method for defibrillation

- Demonstrate that cardioversion can be achieved by a series of far-field low-energy pulses (~1.4V/cm) delivered at a frequency close to the dominant frequency of the arrhythmia.
- Internal ~7J (350V, 4 A) \rightarrow (requires >5V/cm)
- This method is based on the idea of recruitment of virtual electrodes in cardiac tissue and global synchronization.

Virtual electrodes and secondary sources

Example with large holes was a proof of concept Not only large holes but also smaller conductivity discontinuities can act as "virtual electrodes."

Virtual electrodes and secondary sources

Example with large holes was a proof of concept Not only large holes but also smaller conductivity discontinuities can act as "virtual electrodes."

> Field Strength E = 0.6 V/cm

Field Strength E = 1.2 V/cm

Bidomain (GMRES) dx=.01 cm, dt=.01ms Zero flux B.C.s, finite volume I_{ion}: Fox et al. model Collagen ~.065cm

Virtual electrodes and secondary sources

Example with large holes was a proof of concept Not only large holes but also smaller conductivity discontinuities can act as "virtual electrodes."

Defibrillation via Virtual Electrodes by synchronization

Termination of spiral waves in simulated cardiac tissue by 4 low-energy shocks.

Bidomain (GMRES) dx=.01cm, dt=.01ms Zero flux B.C.s, finite volume I_{ion}: Nygren et al. atrial cell model Collagen ~.065cm

As the tissue synchronizes to the pacing period, more tissue gets activated simultaneously, and the reentries are terminated.

Defibrillation via Virtual Electrodes by synchronization

Termination of spiral waves in simulated cardiac tissue by 4 low-energy shocks.

Bidomain (GMRES) dx=.01cm, dt=.01ms Zero flux B.C.s, finite volume I_{ion}: Nygren et al. atrial cell model Collagen ~.065cm

As the tissue synchronizes to the pacing period, more tissue gets activated simultaneously, and the reentries are terminated.

Defibrillation via Virtual Electrodes by synchronization

Termination of spiral waves in simulated cardiac tissue by 4 low-energy shocks.

Bidomain (GMRES) dx=.01cm, dt=.01ms Zero flux B.C.s, finite volume I_{ion}: Nygren et al. atrial cell model Collagen ~.065cm

As the tissue synchronizes to the pacing period, more tissue gets activated simultaneously, and the reentries are terminated.

Nygren et al. Human atrial

Cardioversion success

Cardioversion success

Cardioversion success

• Cardioversion failure

E=0.93 V/cm

Cardioversion success

• Cardioversion failure

E=0.93 V/cm

Examples of low-energy far-field stimulation and single high-enrgy pulse cardioversion

FF Failure E=0.9 V/cm

FF Success E=1.4 V/cm

Cardioversion Failure E=4.0 V/cm Cardioversion Success E=4.67 V/cm

Examples of low-energy far-field stimulation in different preparations Dominant periods 30 - 60 ms

Success rate of 93 percent (69/74 trials in 8 canine atrial preparations). Successful defibrillation using FF-AFP ranged between 0.074 and 0.81 J, with an average of 0.24 J,

Overview of Project S Smolka, R Grosu, J. Glimm, R. Gilmour, F. Fenton Year 1-2

Model Checking and abstraction

Atrial detail models ← → Minimal models ← → Hybrid automata
models ← → Inimal models ← → Hybrid automata

Specific Criteria: Experimental data (normal and disease) Characteristics with model checking

Single cell:

Tissue:

- Threshold for excitation
 - dV/dt_max (upstroke)
 - Resting membrane potential
 - APD_min and DI_min
 - Adaptation to changes in Cycle length (APD and CV restitution)
 - AP Shape at all cycle lengths

- Wave length
- # of singularities
- Dominant frequency
- Life time of singularities

Overview of Project S Smolka, R Grosu, J. Glimm, R. Gilmour, F. Fenton Year 3-4

•Quantification of AF initiation and of differences between Normal and disease models.

Parameter optimization for low voltage FF-AFP

Future Directions

 Apply our expertise in cell modeling to incorporate spatial variability in human ventricular and atrial electrophysiology.

Future Directions

Use our knowledge and experience in ulletreconstructing three-dimensional tissue structure to develop anatomical models of the human ventricles and atria.

canine

Future Directions

 Use our knowledge and experience in reconstructing three-dimensional tissue structure to develop anatomical models of the human ventricles and atria.

mouse

canine

Canine heart (MRI @120 microns resolution) Canine heart (DTMRI @ 250 microns resolution)

Future Directions

 Use our knowledge and experience in reconstructing three-dimensional tissue structure to develop anatomical models of the human

Future Directions

• Apply optical mapping techniques to quantify the properties of arrhythmias in human hearts.

Future Directions

• Apply optical mapping techniques to quantify the properties of arrhythmias in human hearts.

Collaborators

Robert F. Gilmour, Jr. Eberhard Bodenschatz Ulrich Parlitz Stephan Lehnart

http://TheVirtualHeart.org

Support: NSF #0824399 (EMC) and #0800793 (FHF and EMC) NIH HL075515-S03,-S04 (FHF) EU FP7 (FHF and SL)