

Outline

- Not merely "complexity, networks, abstraction, recursion, modularity,...."
- But very specific forms of these.
- Formal methods have great potential
- Illustrate with case studies and cartoons: Internet versus bacterial biosphere
- Implicitly: importance of formal methods, not merely modeling and simulation

Network Math and Engineering (NetME) Challenges

- Predictive modeling, simulation, and analysis of complex systems in technology and nature
- Theoretical foundation for design of network architectures
- Balance rigor/relevance, integrative/coherent
- Model/simulate is critical but limited
 - Predicting rare but catastrophic events
 - Design, not merely analysis
 - Managing complexity and uncertainty

"Architecture"

- Most persistent, ubiquitous, and global features of organization
- Constrains what is possible for good or bad
- Platform that enables (or prevents) innovation, sustainability, etc,
- Internet, biology, energy, manufacturing, transportation, water, food, waste, law, etc
- Existing architectures are unsustainable
- Theoretical foundation is fragmented, incoherent, incomplete

Stochastics in Biology

- Arkin, Gillespie, Petzold, Khammash, El-Samad, Munsky, Paulsson, Vinnicombe, many others...
- Noise in the cellular environment
 - Elowitz, van Oudenaarden, Collins, Swain, Xie, Elston, ...
- Stochastic Monte Carlo Simulation
 - Kurtz, Gibson, Bruck, Anderson, Rathinam, Cao, Salis, Kaznessis, ...
- Statistical moment computations
 - Hespanha, Singh, Verghese, Gomez-Uribe, Kimura
- Density function computations
 - McNamara, Sidje, ...
- Stochastic differential equation approximations
 - van Kampen, Kurtz, Elf, Ehrenberg,...
- Spatial stochastic models and tools
 - Elf, Iglesias,...

Very incomplete, idiosyncratic list

Other Influences

- Internet (Kelly/Low, Willinger, Clark, Wroclawski, Day, Chang, etc etc)
- Biology/Medicine (Savageau, G&K, Mattick, Csete, Arkin, Alon, Caporale, de Duve, Exerc Physio, Acute Care, etc etc...)
- Architecture (Alexander, Salingeros,...)
- Aerospace (many, Maier is a good book)
- Philosophy/History (Fox Keller, Jablonka&Lamb)
- Physics/ecology (Carlson)
- Management (Baldwin,...)
- Resilience/Safety/Security Engineering/Economics (Wood, Anderson, Leveson, ...)

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamic, stochastic
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution
- How the parts work?

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Focus on bacterial biosphere

Question: Human complexity

Robust

- ③ Efficient, flexible metabolism
- © Regeneration & renewal
- ③ Rich microbial symbionts
- Immune systems
- Complex societies
- Advanced technologies

Yet Fragile

- $\ensuremath{\mathfrak{S}}$ Obesity and diabetes
- $\ensuremath{\mathfrak{S}}$ Cancer
- ③ Parasites, infection
- ⊗ Inflammation, Auto-Im.
- Epidemics, war, ...

Mechanism?

Robust

- ③ Efficient, flexible metabolism
- ③ Regeneration & renewal
 - Sat accumulation
 - Insulin resistance
 - Inflammation

Fluctuating energy

Yet Fragile

- $\ensuremath{\mathfrak{S}}$ Obesity and diabetes
- S Cancer
 - S Fat accumulation
 - ℬ Insulin resistance
 - $\ensuremath{\mathfrak{S}}$ Inflammation

Static energy

Implications/ Generalizations abolism

Robust

- © Efficient, flexible metabolism
- © Rich microbial symbionts
- Immune systems
- © Regeneration & renewal
- Complex societies
- Advanced technologies

Yet Fragile

- Obesity and diabetes
- $\ensuremath{\mathfrak{S}}$ Parasites, infection
- ⊗ Inflammation, Auto-Im.
- S Cancer
- Epidemics, war, ...
- ▲ Catastrophic failures
- Fragility = Hijacking, side effects, unintended...
 of mechanisms evolved for robustness
- Complexity is driven by control, robust/fragile tradeoffs
- Math: New robust/fragile conservation laws

Non-networked Systems

Resources

Network requirements

Geographically local

Layered solution

Constraints

Universal control

That deconstrain

That deconstrain

Layered solution

How many layers are there?

As many as you need.

Layered solution

And layers have sublayers

Layered solution

Ancient network architecture: "Bell-heads versus Net-heads" Layers (Net) Computer

Pathways (Bell) Communications

Phone systems

Cyber-Physical Theories

- Thermodynamics
- Communications
- Control
- Computation

Cyber

- Thermodynamics
- Communications
- Control
- Computation

- Thermodynamics
- Communications
- Control
- Computation

Internet

Bacteria

Case studies

- Thermodynamics
- Communications
- Control
- Computation

- Thermodynamics
- Communications
- Control
- Computation

Promising unifications
Theoretical framework: Constraints that deconstrain

- Optimization
- Optimal control
- Robust control
- Game theory
- Network coding

Architecture is *not* graph topology.

Architecture facilitates arbitrary graphs.

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, selforganized criticality, etc

DNA - RNA - Protein

Network architecture?

Layered Brain (Hawkins)?

Inside every cell

Core metabolic bowtie

If we drew the feedback loops the

That deconstrain

Running only the top layers

Mature red blood cells live 120 days

> "metabolism first" origins of life?

Reactions

Flow/error

Protein level

Reactions

Flow/error

RNA level

Reactions Flow/error

DNA level

DNA

Top to bottom

- Metabolically costly but fast to cheap but slow
- Special enzymes to general polymerases
- Allostery to regulated recruitment
- Analog to digital
- High molecule count to low (noise)

Rich Tradeoffs

Biology versus the Internet

Similarities

- Evolvable architecture
- Robust yet fragile
- Constraints/deconstrain
- Layering, modularity
- Hourglass with bowties
- Feedback
- Dynamics
- Distributed/decentralized
- *Not* scale-free, edge-of-chaos, self-organized criticality, etc

Differences

- Metabolism
- Materials and energy
- Autocatalytic feedback
- Feedback complexity
- Development and regeneration
- >4B years of evolution

Autocatalytic feedback

What theory is relevant to these more complex feedback systems?

"Central dogma"

RNAp

Protein

This is just charging and discharging

Recursive control structure

Recursive control structure

Physical

Bewildering w/out clear grasp of layered architecture

Horizontal gene transfer

Eukaryotes

Fungi

Plants

Algae

Animals

Archaea

Bacteria that gave rise to chloroplasts

Bacteria that gave rise to mitochondria

orarchaeota

HGT and Shared Protocols

Bacteria

What is locus of early evolution?

Architecture!?!

Hyperthermophilic bacteria

Common Ancestral Community of Primitive Cells

Horizontal gene transfer

fan-in of diverse inputs fan-out of diverse outputs

Diverse **Highly robust** function Diverse Evolvable Deconstrained Diverse Robust Constraints that yet fragile deconstrain <u>components</u>

Universal Control

- Highly fragile
- Universal
- Frozen

universal

carriers

- Constrained
- Hijacking

What theory is relevant to these more complex feedback systems?

Autocatalytic

Control

Caution: mixed cartoon

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S\right| \, j\omega \, \left|d\omega \ge 0\right|$$

$$\int_{-\infty}^{\infty} \ln \left| S \quad j\omega \right| d\omega = \int_{-\infty}^{\infty} \ln \left| \frac{X \quad j\omega}{U \quad j\omega} \right| d\omega$$

$$= \int_{-\infty}^{\infty} \ln |X| \, j\omega \, |d\omega - \int_{-\infty}^{\infty} \ln |U| \, j\omega \, |d\omega$$

Entropy rates

Hard limits

[a system] can have [a property] *robust* for [a set of perturbations]

Yet be *fragile for*

[a different property]

Or [a different perturbation]

Robust yet fragile = fragile robustness

$$S \quad j\omega = \frac{X \quad j\omega}{U \quad j\omega}$$

Hard limits

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S\right| j\omega \left|d\omega \ge 0\right|$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| \frac{z}{z^{2}+\omega^{2}}d\omega \ge \ln\left|\frac{z+p}{z-p}\right|$$

The plant can make this tradeoff worse.

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S\right|\,j\omega\,\left|d\omega\geq0\right|$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| \frac{z}{z^{2}+\omega^{2}}d\omega \ge \ln\left|\frac{z+p}{z-p}\right|$$

All controllers: \geq Biological cells: =

$$z = \frac{k}{q}$$
 $p = RHPzero s^2 + q\alpha + k s - \alpha k$

$$S \quad j\omega = \frac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi} \int_{0}^{\infty} \ln \left| S \quad j\omega \right| d\omega \ge 0$$
$$\frac{1}{\pi} \int_{0}^{\infty} \ln \left| S \quad j\omega \right| \frac{z}{z^{2} + \omega^{2}} d\omega \ge \ln \left| \frac{z + p}{z - p} \right|$$

Small *z* is *bad*.

 $p = RHPzero s^2 + q\alpha + k s - \alpha k$

Small *z* is *bad* (oscillations and crashes)

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S \quad j\omega\right| \frac{z}{z^{2}+\omega^{2}}d\omega \ge \ln\left|\frac{z+p}{z-p}\right|$$

Small z =

- small k and/or
- large q

Correctly predicts conditions with "glycolytic oscillations"

$$S \quad j\omega = rac{X \quad j\omega}{U \quad j\omega}$$

$$\frac{1}{\pi}\int_{0}^{\infty}\ln\left|S\right| \, j\omega \, \left|d\omega \ge 0\right|$$

$$\int_{-\infty}^{\infty} \ln \left| S \quad j\omega \right| d\omega = \int_{-\infty}^{\infty} \ln \left| \frac{X \quad j\omega}{U \quad j\omega} \right| d\omega$$

$$= \int_{-\infty}^{\infty} \ln |X| \, j\omega \, |d\omega - \int_{-\infty}^{\infty} \ln |U| \, j\omega \, |d\omega$$

Entropy rates

Hard limits

Network motifs in the transcriptional regulation network of *Escherichia coli*

Shai S. Shen-Orr¹, Ron Milo², Shmoolik Mangan¹ & Uri Alon^{1,2}

Network motifs in the transcriptional regulation network of *Escherichia coli*

Shai S. Shen-Orr¹, Ron Milo², Shmoolik Mangan¹ & Uri Alon^{1,2}

mRNA activity is actively controlled.

The greatest complexity here is primarily in the control of *rates*

Gly G1P G6P F6P F1-6B Gly3 ATP 13BPG 3PG Oxa 2PG PEP Pyr ACA TCA JADH Cit

That is not always the case.

All at the DNA layer

Network motifs in the transcriptional regulation network of *Escherichia coli*

