
Center for

Experimental Software Engineering

Requirements Extraction from

Models of Automotive Software

Rance Cleaveland

Department of Computer Science
University of Maryland

1 November 2009

Joint work with Sam Huang, Chris Ackermann (UMD); Arnab Ray (Fraunhofer
CESE); Charles Shelton, Beth Latronico (Robert Bosch)

©2009 Fraunhofer USA Inc.

Center for

Experimental Software Engineering

The Model Checking Problem

M ╞ φ

©2009 Fraunhofer USA Inc. 1

?

system / model property / requirement

satisfies / possesses

Center for

Experimental Software Engineering

The Synthesis Problem

©2009 Fraunhofer USA Inc. 2

? ╞ φ

Center for

Experimental Software Engineering

The Requirements-Extraction

Problem

©2009 Fraunhofer USA Inc. 3

M ╞ ?

Center for

Experimental Software Engineering

Motivation for Requirements

Extraction

• System comprehension

• Specification reconstruction

– Missing / incomplete / out-of-date

documentation

– “Implicit requirements” (introduced by

developers)

©2009 Fraunhofer USA Inc. 4

Center for

Experimental Software Engineering

Requirements Extraction for

Automotive Software

• Joint project: UMD, Fraunhofer, Bosch

• Outline

– Automotive software development

– Reqts-extraction via machine learning

– Pilot study

– Conclusion

©2009 Fraunhofer USA Inc. 5

Center for

Experimental Software Engineering

Automotive Software

• Driver of innovation

90% of new feature content based on sw [GM]

50M+ lines of code [GM]

• Rising cost

20% of 2006 vehicle cost due to software [Conti]

• Warranty, liability, quality

High-profile recalls in Germany, Japan, US

©2009 Fraunhofer USA Inc. 6

Center for

Experimental Software Engineering

Automotive Software Development

• Ensure high quality of automotive software

– ... while preserving time to market

– … at reasonable cost

• How?

– Model-based development (MBD)

Efficiencies in production

– Automated testing

Efficiencies in verification and validation (V&V)

©2009 Fraunhofer USA Inc. 7

Center for

Experimental Software Engineering

Models: Simulink®

• Block-diagram

modeling language of

The MathWorks, Inc.

• Hierarchical modeling

• Simulation

• Continuous, discrete

semantics

©2009 Fraunhofer USA Inc.

Center for

Experimental Software Engineering

Models: Stateflow®

©2009 Fraunhofer USA Inc.

Center for

Experimental Software Engineering

Semantics

• Simulink has different “solvers” (= semantics)

– Continuous: inputs / outputs are signals

– Discrete: inputs / outputs are data values

• Analog modeling: continuous solvers

• Digital-controller modeling: discrete solvers

– Synchronous

– Run-to-completion

– Time-driven

©2009 Fraunhofer USA Inc.

Center for

Experimental Software Engineering

©2008 Fraunhofer USA Inc.

(Model-Based) Development

Requirements

System test

Design

Specifications

Unit test

Implementation

Final test

models

models

• Models formalize specifications, design

• Models support V&V, testing, code generation

• Models facilitate communication among teams

Center for

Experimental Software Engineering

Requirements Extraction

• The extraction problem

– Given: system (M)

– Produce: requirements (φ)

• Approach

– Generate test data satisfying coverage criteria

– Use machine learning to propose invariants

– Check invariants using instrumentation-based

verification

©2009 Fraunhofer USA Inc. 12

Center for

Experimental Software Engineering

Coverage Testing via Guided

Simulation
• Test = simulation run = sequence of I/O vectors

• Goal: maximize model coverage

e.g. branch, state, transition, MC/DC, etc.

• Method: guided simulation

– Simulate model, BUT

– Choose input data to guide simulation to uncovered parts

– Turn simulation runs into test data

• Input selection by Monte Carlo, constraint solving

• Implemented in Reactis® model-based testing and
verification environment

©2009 Fraunhofer USA Inc. 13

Center for

Experimental Software Engineering

Machine Learning

• Tools for inferring relationships among

variables based on time-series data

– Input: table

– Output: relationships (“association rules”)

e.g. 0 ≤ x ≤ 3 -> y ≥ 0

©2008 Fraunhofer USA Inc. 14

Time x y

0 1 0

1 -1 -1

2 2 1

… … …

Center for

Experimental Software Engineering

Instrumentation-Based

Verification
• Formulate requirements

as monitor models
– Inputs: signals in model

– Outputs: boolean flags
• Flag = true: no violation so

far

• Flag = false: violation
detected

• Instrument main model
with monitors

• Test instrumented model
to search for violations

“If speed is < 30, cruise
control must remain inactive”

©2009 Fraunhofer USA Inc. 15

Center for

Experimental Software Engineering

Machine Learning and

Requirements Extraction

• General dea

– Treat tests (I/O sequences) as experimental data

– Use to infer relationships between inputs, outputs

• Our insight

– Ensure test cases satisfy coverage criteria (e.g.

branch coverage) to ensure “thoroughness”

– Use IBV to double-check proposed relationships

©2008 Fraunhofer USA Inc. 16

Center for

Experimental Software Engineering

Pilot Study: Production Body-

Electronic Application

• Artifacts

– Simulink model (ca. 75 blocks)

– Requirements formulated as state machine

– Requirements correspond to 42 invariants
defining transition relation

• Goal: our approach, random testing [Raz]

– Completeness (% of 42 detected?)

– Accuracy (% false positives?)

©2008 Fraunhofer USA Inc. 17

Center for

Experimental Software Engineering

Pilot Study: Tool Chain

• Automated test-generation tool: Reactis

• Machine-learning tool: Magnum Opus

• Additional tooling

– Test-format conversions

– Automated generation of monitor models,

instrumentation

©2009 Fraunhofer USA Inc. 18

Center for

Experimental Software Engineering

Experimental Design

• Repeat five times

1. Generate coverage tests (Reactis)

2. Create invariants (Magnum Opus)

3. Use IBV to double-check invariants (Reactis)

4. Combine original, IBV tests, rerun 2, 3

• Repeat five times

1. Generate random tests (Reactis)

2. Create invariants (Magnum Opus)

3. Use IBV to double-check invariants (Reactis)

4. Create second set of random tests, combine with first

5. Repeat 3

©2009 Fraunhofer USA Inc. 19

Center for

Experimental Software Engineering

Experimental Results

• Hypothesis: coverage-testing yields better invariants than
random testing

• Coverage results:

95% of inferred invariants true

97% of requirements inferred

Two missing requirements detected

• Random results:

55% of inferred invariants true

40% of requirements inferred

• Hypothesis confirmed

©2008 Fraunhofer USA Inc. 20

Center for

Experimental Software Engineering

Conclusions and Directions for

Future Research

• Coverage-testing yields better requirements

• IBV double-checks generated invariants

effectively

• Future directions

– Extraction of temporally complex requirements

– Visualization of generated requirements

– Requirements extraction as tool for model

understanding, exploration, validation

©2009 Fraunhofer USA Inc. 21

Center for

Experimental Software Engineering

Thank You!

Rance Cleaveland

University of Maryland

rance@cs.umd.edu

301-405-8572

www.cs.umd.edu/~rance

©2009 Fraunhofer USA Inc. 22

mailto:rance@cs.umd.edu

